-
+ 66EDF48A07BB672B7D9329150436A40AB2F1628F1F289B4C52B2E4BDB987B9105F36C441FB21A141346406A675D34B6265A4A0BC00D3C4DE471F461D0ACC5765mpi/mpi-inv.c(0 . 0)(1 . 266)
 9084 /* mpi-inv.c  -  MPI functions
 9085  * Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
 9086  *
 9087  * This file is part of GnuPG.
 9088  *
 9089  * GnuPG is free software; you can redistribute it and/or modify
 9090  * it under the terms of the GNU General Public License as published by
 9091  * the Free Software Foundation; either version 3 of the License, or
 9092  * (at your option) any later version.
 9093  *
 9094  * GnuPG is distributed in the hope that it will be useful,
 9095  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 9096  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 9097  * GNU General Public License for more details.
 9098  *
 9099  * You should have received a copy of the GNU General Public License
 9100  * along with this program; if not, see <http://www.gnu.org/licenses/>.
 9101  */
 9102 
 9103 #include <config.h>
 9104 #include <stdio.h>
 9105 #include <stdlib.h>
 9106 #include "mpi-internal.h"
 9107 
 9108 
 9109 /****************
 9110  * Calculate the multiplicative inverse X of A mod N
 9111  * That is: Find the solution x for
 9112  *		1 = (a*x) mod n
 9113  */
 9114 void
 9115 mpi_invm( MPI x, MPI a, MPI n )
 9116 {
 9117 #if 0
 9118     MPI u, v, u1, u2, u3, v1, v2, v3, q, t1, t2, t3;
 9119     MPI ta, tb, tc;
 9120 
 9121     u = mpi_copy(a);
 9122     v = mpi_copy(n);
 9123     u1 = mpi_alloc_set_ui(1);
 9124     u2 = mpi_alloc_set_ui(0);
 9125     u3 = mpi_copy(u);
 9126     v1 = mpi_alloc_set_ui(0);
 9127     v2 = mpi_alloc_set_ui(1);
 9128     v3 = mpi_copy(v);
 9129     q  = mpi_alloc( mpi_get_nlimbs(u)+1 );
 9130     t1 = mpi_alloc( mpi_get_nlimbs(u)+1 );
 9131     t2 = mpi_alloc( mpi_get_nlimbs(u)+1 );
 9132     t3 = mpi_alloc( mpi_get_nlimbs(u)+1 );
 9133     while( mpi_cmp_ui( v3, 0 ) ) {
 9134 	mpi_fdiv_q( q, u3, v3 );
 9135 	mpi_mul(t1, v1, q); mpi_mul(t2, v2, q); mpi_mul(t3, v3, q);
 9136 	mpi_sub(t1, u1, t1); mpi_sub(t2, u2, t2); mpi_sub(t3, u3, t3);
 9137 	mpi_set(u1, v1); mpi_set(u2, v2); mpi_set(u3, v3);
 9138 	mpi_set(v1, t1); mpi_set(v2, t2); mpi_set(v3, t3);
 9139     }
 9140     /*	log_debug("result:\n");
 9141 	log_mpidump("q =", q );
 9142 	log_mpidump("u1=", u1);
 9143 	log_mpidump("u2=", u2);
 9144 	log_mpidump("u3=", u3);
 9145 	log_mpidump("v1=", v1);
 9146 	log_mpidump("v2=", v2); */
 9147     mpi_set(x, u1);
 9148 
 9149     mpi_free(u1);
 9150     mpi_free(u2);
 9151     mpi_free(u3);
 9152     mpi_free(v1);
 9153     mpi_free(v2);
 9154     mpi_free(v3);
 9155     mpi_free(q);
 9156     mpi_free(t1);
 9157     mpi_free(t2);
 9158     mpi_free(t3);
 9159     mpi_free(u);
 9160     mpi_free(v);
 9161 #elif 0
 9162     /* Extended Euclid's algorithm (See TAOPC Vol II, 4.5.2, Alg X)
 9163      * modified according to Michael Penk's solution for Exercice 35 */
 9164 
 9165     /* FIXME: we can simplify this in most cases (see Knuth) */
 9166     MPI u, v, u1, u2, u3, v1, v2, v3, t1, t2, t3;
 9167     unsigned k;
 9168     int sign;
 9169 
 9170     u = mpi_copy(a);
 9171     v = mpi_copy(n);
 9172     for(k=0; !mpi_test_bit(u,0) && !mpi_test_bit(v,0); k++ ) {
 9173 	mpi_rshift(u, u, 1);
 9174 	mpi_rshift(v, v, 1);
 9175     }
 9176 
 9177 
 9178     u1 = mpi_alloc_set_ui(1);
 9179     u2 = mpi_alloc_set_ui(0);
 9180     u3 = mpi_copy(u);
 9181     v1 = mpi_copy(v);				   /* !-- used as const 1 */
 9182     v2 = mpi_alloc( mpi_get_nlimbs(u) ); mpi_sub( v2, u1, u );
 9183     v3 = mpi_copy(v);
 9184     if( mpi_test_bit(u, 0) ) { /* u is odd */
 9185 	t1 = mpi_alloc_set_ui(0);
 9186 	t2 = mpi_alloc_set_ui(1); t2->sign = 1;
 9187 	t3 = mpi_copy(v); t3->sign = !t3->sign;
 9188 	goto Y4;
 9189     }
 9190     else {
 9191 	t1 = mpi_alloc_set_ui(1);
 9192 	t2 = mpi_alloc_set_ui(0);
 9193 	t3 = mpi_copy(u);
 9194     }
 9195     do {
 9196 	do {
 9197 	    if( mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0) ) { /* one is odd */
 9198 		mpi_add(t1, t1, v);
 9199 		mpi_sub(t2, t2, u);
 9200 	    }
 9201 	    mpi_rshift(t1, t1, 1);
 9202 	    mpi_rshift(t2, t2, 1);
 9203 	    mpi_rshift(t3, t3, 1);
 9204 	  Y4:
 9205 	    ;
 9206 	} while( !mpi_test_bit( t3, 0 ) ); /* while t3 is even */
 9207 
 9208 	if( !t3->sign ) {
 9209 	    mpi_set(u1, t1);
 9210 	    mpi_set(u2, t2);
 9211 	    mpi_set(u3, t3);
 9212 	}
 9213 	else {
 9214 	    mpi_sub(v1, v, t1);
 9215 	    sign = u->sign; u->sign = !u->sign;
 9216 	    mpi_sub(v2, u, t2);
 9217 	    u->sign = sign;
 9218 	    sign = t3->sign; t3->sign = !t3->sign;
 9219 	    mpi_set(v3, t3);
 9220 	    t3->sign = sign;
 9221 	}
 9222 	mpi_sub(t1, u1, v1);
 9223 	mpi_sub(t2, u2, v2);
 9224 	mpi_sub(t3, u3, v3);
 9225 	if( t1->sign ) {
 9226 	    mpi_add(t1, t1, v);
 9227 	    mpi_sub(t2, t2, u);
 9228 	}
 9229     } while( mpi_cmp_ui( t3, 0 ) ); /* while t3 != 0 */
 9230     /* mpi_lshift( u3, k ); */
 9231     mpi_set(x, u1);
 9232 
 9233     mpi_free(u1);
 9234     mpi_free(u2);
 9235     mpi_free(u3);
 9236     mpi_free(v1);
 9237     mpi_free(v2);
 9238     mpi_free(v3);
 9239     mpi_free(t1);
 9240     mpi_free(t2);
 9241     mpi_free(t3);
 9242 #else
 9243     /* Extended Euclid's algorithm (See TAOPC Vol II, 4.5.2, Alg X)
 9244      * modified according to Michael Penk's solution for Exercice 35
 9245      * with further enhancement */
 9246     MPI u, v, u1, u2=NULL, u3, v1, v2=NULL, v3, t1, t2=NULL, t3;
 9247     unsigned k;
 9248     int sign;
 9249     int odd ;
 9250 
 9251     u = mpi_copy(a);
 9252     v = mpi_copy(n);
 9253 
 9254     for(k=0; !mpi_test_bit(u,0) && !mpi_test_bit(v,0); k++ ) {
 9255 	mpi_rshift(u, u, 1);
 9256 	mpi_rshift(v, v, 1);
 9257     }
 9258     odd = mpi_test_bit(v,0);
 9259 
 9260     u1 = mpi_alloc_set_ui(1);
 9261     if( !odd )
 9262 	u2 = mpi_alloc_set_ui(0);
 9263     u3 = mpi_copy(u);
 9264     v1 = mpi_copy(v);
 9265     if( !odd ) {
 9266 	v2 = mpi_alloc( mpi_get_nlimbs(u) );
 9267 	mpi_sub( v2, u1, u ); /* U is used as const 1 */
 9268     }
 9269     v3 = mpi_copy(v);
 9270     if( mpi_test_bit(u, 0) ) { /* u is odd */
 9271 	t1 = mpi_alloc_set_ui(0);
 9272 	if( !odd ) {
 9273 	    t2 = mpi_alloc_set_ui(1); t2->sign = 1;
 9274 	}
 9275 	t3 = mpi_copy(v); t3->sign = !t3->sign;
 9276 	goto Y4;
 9277     }
 9278     else {
 9279 	t1 = mpi_alloc_set_ui(1);
 9280 	if( !odd )
 9281 	    t2 = mpi_alloc_set_ui(0);
 9282 	t3 = mpi_copy(u);
 9283     }
 9284     do {
 9285 	do {
 9286 	    if( !odd ) {
 9287 		if( mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0) ) { /* one is odd */
 9288 		    mpi_add(t1, t1, v);
 9289 		    mpi_sub(t2, t2, u);
 9290 		}
 9291 		mpi_rshift(t1, t1, 1);
 9292 		mpi_rshift(t2, t2, 1);
 9293 		mpi_rshift(t3, t3, 1);
 9294 	    }
 9295 	    else {
 9296 		if( mpi_test_bit(t1, 0) )
 9297 		    mpi_add(t1, t1, v);
 9298 		mpi_rshift(t1, t1, 1);
 9299 		mpi_rshift(t3, t3, 1);
 9300 	    }
 9301 	  Y4:
 9302 	    ;
 9303 	} while( !mpi_test_bit( t3, 0 ) ); /* while t3 is even */
 9304 
 9305 	if( !t3->sign ) {
 9306 	    mpi_set(u1, t1);
 9307 	    if( !odd )
 9308 		mpi_set(u2, t2);
 9309 	    mpi_set(u3, t3);
 9310 	}
 9311 	else {
 9312 	    mpi_sub(v1, v, t1);
 9313 	    sign = u->sign; u->sign = !u->sign;
 9314 	    if( !odd )
 9315 		mpi_sub(v2, u, t2);
 9316 	    u->sign = sign;
 9317 	    sign = t3->sign; t3->sign = !t3->sign;
 9318 	    mpi_set(v3, t3);
 9319 	    t3->sign = sign;
 9320 	}
 9321 	mpi_sub(t1, u1, v1);
 9322 	if( !odd )
 9323 	    mpi_sub(t2, u2, v2);
 9324 	mpi_sub(t3, u3, v3);
 9325 	if( t1->sign ) {
 9326 	    mpi_add(t1, t1, v);
 9327 	    if( !odd )
 9328 		mpi_sub(t2, t2, u);
 9329 	}
 9330     } while( mpi_cmp_ui( t3, 0 ) ); /* while t3 != 0 */
 9331     /* mpi_lshift( u3, k ); */
 9332     mpi_set(x, u1);
 9333 
 9334     mpi_free(u1);
 9335     mpi_free(v1);
 9336     mpi_free(t1);
 9337     if( !odd ) {
 9338 	mpi_free(u2);
 9339 	mpi_free(v2);
 9340 	mpi_free(t2);
 9341     }
 9342     mpi_free(u3);
 9343     mpi_free(v3);
 9344     mpi_free(t3);
 9345 
 9346     mpi_free(u);
 9347     mpi_free(v);
 9348 #endif
 9349 }