
GPRbuild User’s Guide
Document identifier: $Rev:: 187710 $

Date: $Date:: 2012-03-28#$

AdaCore

Copyright c© 2007-2011, AdaCore
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with the Invariant Sections
being “GNU Free Documentation License”, with the Front-Cover Texts being
“GPRbuild User’s Guide”, and with no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

Chapter 1: GNAT Project Manager

1 GNAT Project Manager

1.1 Introduction
This chapter describes GNAT’s Project Manager, a facility that allows you to
manage complex builds involving a number of source files, directories, and
options for different system configurations. In particular, project files allow you
to specify:
• The directory or set of directories containing the source files, and/or the

names of the specific source files themselves
• The directory in which the compiler’s output (‘ALI’ files, object files, tree

files, etc.) is to be placed
• The directory in which the executable programs are to be placed
• Switch settings for any of the project-enabled tools; you can apply these

settings either globally or to individual compilation units.
• The source files containing the main subprogram(s) to be built
• The source programming language(s)
• Source file naming conventions; you can specify these either globally or for

individual compilation units (see Section 1.2.8 [Naming Schemes], page 13).
• Change any of the above settings depending on external values, thus en-

abling the reuse of the projects in various scenarios (see Section 1.4 [Sce-
narios in Projects], page 21).

• Automatically build libraries as part of the build process (see Section 1.5
[Library Projects], page 23).

Project files are written in a syntax close to that of Ada, using familiar notions
such as packages, context clauses, declarations, default values, assignments,
and inheritance (see Section 1.9 [Project File Reference], page 45).

Project files can be built hierarchically from other project files, simplify-
ing complex system integration and project reuse (see Section 1.3 [Organizing
Projects into Subsystems], page 16).
• One project can import other projects containing needed source files. More

generally, the Project Manager lets you structure large development ef-
forts into hierarchical subsystems, where build decisions are delegated to
the subsystem level, and thus different compilation environments (switch
settings) used for different subsystems.

• You can organize GNAT projects in a hierarchy: a child project can extend a
parent project, inheriting the parent’s source files and optionally overriding
any of them with alternative versions (see Section 1.6 [Project Extension],
page 31).

1

GPRbuild User’s Guide

Several tools support project files, generally in addition to specifying the infor-
mation on the command line itself). They share common switches to control
the loading of the project (in particular ‘-Pprojectfile’ and ‘-Xvbl=value’). See
Section 2.1.1 [Switches Related to Project Files], page 63.

The Project Manager supports a wide range of development strategies, for
systems of all sizes. Here are some typical practices that are easily handled:
• Using a common set of source files and generating object files in different

directories via different switch settings. It can be used for instance, for
generating separate sets of object files for debugging and for production.

• Using a mostly-shared set of source files with different versions of some
units or subunits. It can be used for instance, for grouping and hiding

all OS dependencies in a small number of implementation units.
Project files can be used to achieve some of the effects of a source versioning

system (for example, defining separate projects for the different sets of sources
that comprise different releases) but the Project Manager is independent of any
source configuration management tool that might be used by the developers.

The various sections below introduce the different concepts related to
projects. Each section starts with examples and use cases, and then goes into
the details of related project file capabilities.

1.2 Building With Projects
In its simplest form, a unique project is used to build a single executable. This
section concentrates on such a simple setup. Later sections will extend this
basic model to more complex setups.

The following concepts are the foundation of project files, and will be further
detailed later in this documentation. They are summarized here as a reference.

Project file:
A text file using an Ada-like syntax, generally using the ‘.gpr’ ex-
tension. It defines build-related characteristics of an application.
The characteristics include the list of sources, the location of those
sources, the location for the generated object files, the name of the
main program, and the options for the various tools involved in the
build process.

Project attribute:
A specific project characteristic is defined by an attribute clause. Its
value is a string or a sequence of strings. All settings in a project
are defined through a list of predefined attributes with precise se-
mantics. See Section 1.9.9 [Attributes], page 54.

2

Chapter 1: GNAT Project Manager

Package in a project:
Global attributes are defined at the top level of a project. At-
tributes affecting specific tools are grouped in a package whose
name is related to tool’s function. The most common packages are
Builder, Compiler, Binder, and Linker. See Section 1.9.4 [Pack-
ages], page 48.

Project variables:
In addition to attributes, a project can use variables to store inter-
mediate values and avoid duplication in complex expressions. It can
be initialized with a value coming from the environment. A frequent
use of variables is to define scenarios. See Section 1.9.6 [External
Values], page 51, See Section 1.4 [Scenarios in Projects], page 21,
and See Section 1.9.8 [Variables], page 53.

Source files and source directories:
A source file is associated with a language through a naming con-
vention. For instance, foo.c is typically the name of a C source file;
bar.ads or bar.1.ada are two common naming conventions for a
file containing an Ada spec. A compilation unit is often composed
of a main source file and potentially several auxiliary ones, such as
header files in C. The naming conventions can be user defined See
Section 1.2.8 [Naming Schemes], page 13, and will drive the builder
to call the appropriate compiler for the given source file. Source
files are searched for in the source directories associated with the
project through the Source Dirs attribute. By default, all the files
(in these source directories) following the naming conventions asso-
ciated with the declared languages are considered to be part of the
project. It is also possible to limit the list of source files using the
Source Files or Source List File attributes. Note that those last
two attributes only accept basenames with no directory information.

Object files and object directory:
An object file is an intermediate file produced by the compiler from
a compilation unit. It is used by post-compilation tools to produce
final executables or libraries. Object files produced in the context of
a given project are stored in a single directory that can be specified
by the Object Dir attribute. In order to store objects in two or more
object directories, the system must be split into distinct subsystems
with their own project file.

The following subsections introduce gradually all the attributes of interest
for simple build needs. Here is the simple setup that will be used in the following
examples.

3

GPRbuild User’s Guide

The Ada source files ‘pack.ads’, ‘pack.adb’, and ‘proc.adb’ are in the
‘common/’ directory. The file ‘proc.adb’ contains an Ada main subprogram Proc
that withs package Pack. We want to compile these source files with the switch
‘-O2’, and put the resulting files in the directory ‘obj/’.

common/

pack.ads

pack.adb

proc.adb

common/release/

proc.ali, proc.o pack.ali, pack.o

Our project is to be called Build. The name of the file is the name of the
project (case-insensitive) with the ‘.gpr’ extension, therefore the project file
name is ‘build.gpr’. This is not mandatory, but a warning is issued when this
convention is not followed.

This is a very simple example, and as stated above, a single project file is
enough for it. We will thus create a new file, that for now should contain the
following code:

project Build is
end Build;

1.2.1 Source Files and Directories
When you create a new project, the first thing to describe is how to find the
corresponding source files. This is the only settings that are needed by all
the tools that will use this project (builder, compiler, binder and linker for the
compilation, IDEs to edit the source files,. . .).

First step is to declare the source directories, which are the directories to be
searched to find source files. In the case of the example, the ‘common’ directory
is the only source directory.

There are several ways of defining source directories:
• When the attribute Source Dirs is not used, a project contains a single

source directory which is the one where the project file itself resides. In our
example, if ‘build.gpr’ is placed in the ‘common’ directory, the project has
the needed implicit source directory.

• The attribute Source Dirs can be set to a list of path names, one for each
of the source directories. Such paths can either be absolute names (for
instance ‘"/usr/local/common/"’ on UNIX), or relative to the directory
in which the project file resides (for instance "." if ‘build.gpr’ is inside
‘common/’, or "common" if it is one level up). Each of the source directories
must exist and be readable.
The syntax for directories is platform specific. For portability, however, the
project manager will always properly translate UNIX-like path names to
the native format of specific platform. For instance, when the same project

4

Chapter 1: GNAT Project Manager

file is to be used both on Unix and Windows, "/" should be used as the
directory separator rather than "\".

• The attribute Source Dirs can automatically include subdirectories using
a special syntax inspired by some UNIX shells. If any of the path in the
list ends with "**", then that path and all its subdirectories (recursively)
are included in the list of source directories. For instance, ‘**’ and ‘./**’
represent the complete directory tree rooted at ".".
When using that construct, it can sometimes be convenient to also use the
attribute Excluded Source Dirs, which is also a list of paths. Each entry
specifies a directory whose immediate content, not including subdirs, is to
be excluded. It is also possible to exclude a complete directory subtree using
the "**" notation.
It is often desirable to remove, from the source directories, directory sub-
trees rooted at some subdirectories. An example is the subdirectories cre-
ated by a Version Control System such as Subversion that creates directory
subtrees .svn/**. To do that, attribute Ignore Source Sub Dirs can be
used. It specifies the list of simple file names for the root of these undesir-
able directory subtrees.

When applied to the simple example, and because we generally prefer to have
the project file at the toplevel directory rather than mixed with the sources, we
will create the following file

build.gpr

project Build is
for Source_Dirs use ("common"); -- <<<<

end Build;

Once source directories have been specified, one may need to indicate source
files of interest. By default, all source files present in the source directories are
considered by the project manager. When this is not desired, it is possible to
specify the list of sources to consider explicitly. In such a case, only source file
base names are indicated and not their absolute or relative path names. The
project manager is in charge of locating the specified source files in the specified
source directories.
• By default, the project manager search for all source files of all specified

languages in all the source directories.
Since the project manager was initially developed for Ada environments,
the default language is usually Ada and the above project file is complete: it
defines without ambiguity the sources composing the project: that is to say,
all the sources in subdirectory "common" for the default language (Ada)
using the default naming convention.
However, when compiling a multi-language application, or a pure C appli-
cation, the project manager must be told which languages are of interest,

5

GPRbuild User’s Guide

which is done by setting the Languages attribute to a list of strings, each
of which is the name of a language. Tools like gnatmake only know about
Ada, while other tools like gprbuild know about many more languages
such as C, C++, Fortran, assembly and others can be added dynamically.
Even when using only Ada, the default naming might not be suitable.
Indeed, how does the project manager recognizes an "Ada file" from any
other file? Project files can describe the naming scheme used for source files,
and override the default (see Section 1.2.8 [Naming Schemes], page 13).
The default is the standard GNAT extension (‘.adb’ for bodies and ‘.ads’
for specs), which is what is used in our example, explaining why no naming
scheme is explicitly specified. See Section 1.2.8 [Naming Schemes], page 13.

• Source Files In some cases, source directories might contain files that
should not be included in a project. One can specify the explicit list of file
names to be considered through the Source Files attribute. When this at-
tribute is defined, instead of looking at every file in the source directories,
the project manager takes only those names into consideration reports er-
rors if they cannot be found in the source directories or does not correspond
to the naming scheme.

• For various reasons, it is sometimes useful to have a project with no sources
(most of the time because the attributes defined in the project file will be
reused in other projects, as explained in see Section 1.3 [Organizing Projects
into Subsystems], page 16. To do this, the attribute Source Files is set to
the empty list, i.e. (). Alternatively, Source Dirs can be set to the empty
list, with the same result.

• Source_List_File If there is a great number of files, it might be more
convenient to use the attribute Source List File, which specifies the full
path of a file. This file must contain a list of source file names (one per
line, no directory information) that are searched as if they had been defined
through Source Files. Such a file can easily be created through external
tools.
A warning is issued if both attributes Source_Files and Source_List_
File are given explicit values. In this case, the attribute Source_Files
prevails.

• Excluded_Source_Files Specifying an explicit list of files is not always
convenient.It might be more convenient to use the default search rules
with specific exceptions. This can be done thanks to the attribute Ex-
cluded Source Files (or its synonym Locally Removed Files). Its
value is the list of file names that should not be taken into account. This
attribute is often used when extending a project, See Section 1.6 [Project Ex-
tension], page 31. A similar attribute Excluded Source List File plays
the same role but takes the name of file containing file names similarly to
Source_List_File.

6

Chapter 1: GNAT Project Manager

In most simple cases, such as the above example, the default source file search
behavior provides the expected result, and we do not need to add anything
after setting Source_Dirs. The project manager automatically finds ‘pack.ads’,
‘pack.adb’ and ‘proc.adb’ as source files of the project.

Note that it is considered an error for a project file to have no sources attached
to it unless explicitly declared as mentioned above.

If the order of the source directories is known statically, that is if "**" is not
used in the string list Source_Dirs, then there may be several files with the
same source file name sitting in different directories of the project. In this case,
only the file in the first directory is considered as a source of the project and
the others are hidden. If "**" is used in the string list Source_Dirs, it is an
error to have several files with the same source file name in the same directory
"**" subtree, since there would be an ambiguity as to which one should be
used. However, two files with the same source file name may exist in two single
directories or directory subtrees. In this case, the one in the first directory or
directory subtree is a source of the project.

1.2.2 Object and Exec Directory
The next step when writing a project is to indicate where the compiler should
put the object files. In fact, the compiler and other tools might create several
different kind of files (for GNAT, there is the object file and the ALI file for
instance). One of the important concepts in projects is that most tools may
consider source directories as read-only and do not attempt to create new or
temporary files there. Instead, all files are created in the object directory. It
is of course not true for project-aware IDEs, whose purpose it is to create the
source files.

The object directory is specified through the Object Dir attribute. Its value
is the path to the object directory, either absolute or relative to the directory
containing the project file. This directory must already exist and be readable
and writable, although some tools have a switch to create the directory if needed
(See the switch -p for gnatmake and gprbuild).

If the attribute Object_Dir is not specified, it defaults to the project directory,
that is the directory containing the project file.

For our example, we can specify the object dir in this way:
project Build is

for Source_Dirs use ("common");

for Object_Dir use "obj"; -- <<<<

end Build;

As mentioned earlier, there is a single object directory per project. As a result,
if you have an existing system where the object files are spread in several
directories, you can either move all of them into the same directory if you
want to build it with a single project file, or study the section on subsystems

7

GPRbuild User’s Guide

(see Section 1.3 [Organizing Projects into Subsystems], page 16) to see how
each separate object directory can be associated with one of the subsystem
constituting the application.

When the linker is called, it usually creates an executable. By default, this
executable is placed in the object directory of the project. It might be convenient
to store it in its own directory.

This can be done through the Exec_Dir attribute, which, like Object Dir
contains a single absolute or relative path and must point to an existing and
writable directory, unless you ask the tool to create it on your behalf. When
not specified, It defaults to the object directory and therefore to the project file’s
directory if neither Object Dir nor Exec Dir was specified.

In the case of the example, let’s place the executable in the root of the
hierarchy, ie the same directory as ‘build.gpr’. Hence the project file is now

project Build is
for Source_Dirs use ("common");

for Object_Dir use "obj";

for Exec_Dir use "."; -- <<<<

end Build;

1.2.3 Main Subprograms
In the previous section, executables were mentioned. The project manager
needs to be taught what they are. In a project file, an executable is indicated by
pointing to source file of the main subprogram. In C this is the file that contains
the main function, and in Ada the file that contains the main unit.

There can be any number of such main files within a given project, and
thus several executables can be built in the context of a single project file.
Of course, one given executable might not (and in fact will not) need all the
source files referenced by the project. As opposed to other build environments
such as makefile, one does not need to specify the list of dependencies of each
executable, the project-aware builders knows enough of the semantics of the
languages to build ands link only the necessary elements.

The list of main files is specified via the Main attribute. It contains a list of
file names (no directories). If a project defines this attribute, it is not necessary
to identify main files on the command line when invoking a builder, and editors
like GPS will be able to create extra menus to spawn or debug the corresponding
executables.

project Build is
for Source_Dirs use ("common");

for Object_Dir use "obj";

for Exec_Dir use ".";

for Main use ("proc.adb"); -- <<<<

end Build;

8

Chapter 1: GNAT Project Manager

If this attribute is defined in the project, then spawning the builder with a
command such as

gnatmake -Pbuild

automatically builds all the executables corresponding to the files listed in the
Main attribute. It is possible to specify one or more executables on the command
line to build a subset of them.

1.2.4 Tools Options in Project Files
We now have a project file that fully describes our environment, and can be
used to build the application with a simple gnatmake command as seen in the
previous section. In fact, the empty project we showed immediately at the
beginning (with no attribute at all) could already fulfill that need if it was put
in the ‘common’ directory.

Of course, we always want more control. This section will show you how to
specify the compilation switches that the various tools involved in the building
of the executable should use.

Since source names and locations are described into the project file, it is not
necessary to use switches on the command line for this purpose (switches such
as -I for gcc). This removes a major source of command line length overflow.
Clearly, the builders will have to communicate this information one way or
another to the underlying compilers and tools they call but they usually use
response files for this and thus should not be subject to command line overflows.

Several tools are participating to the creation of an executable: the compiler
produces object files from the source files; the binder (in the Ada case) creates
an source file that takes care, among other things, of elaboration issues and
global variables initialization; and the linker gathers everything into a single
executable that users can execute. All these tools are known by the project
manager and will be called with user defined switches from the project files.
However, we need to introduce a new project file concept to express which
switches to be used for any of the tools involved in the build.

A project file is subdivided into zero or more packages, each of which con-
tains the attributes specific to one tool (or one set of tools). Project files use
an Ada-like syntax for packages. Package names permitted in project files are
restricted to a predefined set (see Section 1.9.4 [Packages], page 48), and the
contents of packages are limited to a small set of constructs and attributes (see
Section 1.9.9 [Attributes], page 54).

Our example project file can be extended with the following empty packages.
At this stage, they could all be omitted since they are empty, but they show
which packages would be involved in the build process.

project Build is
for Source_Dirs use ("common");

for Object_Dir use "obj";

9

GPRbuild User’s Guide

for Exec_Dir use ".";

for Main use ("proc.adb");

package Builder is --<<< for gnatmake and gprbuild

end Builder;

package Compiler is --<<< for the compiler

end Compiler;

package Binder is --<<< for the binder

end Binder;

package Linker is --<<< for the linker

end Linker;

end Build;

Let’s first examine the compiler switches. As stated in the initial description of
the example, we want to compile all files with ‘-O2’. This is a compiler switch,
although it is usual, on the command line, to pass it to the builder which then
passes it to the compiler. It is recommended to use directly the right package,
which will make the setup easier to understand for other people.

Several attributes can be used to specify the switches:

Default Switches:
This is the first mention in this manual of an indexed attribute.
When this attribute is defined, one must supply an index in the form
of a literal string. In the case of Default Switches, the index is the
name of the language to which the switches apply (since a different
compiler will likely be used for each language, and each compiler
has its own set of switches). The value of the attribute is a list of
switches.
In this example, we want to compile all Ada source files with the
‘-O2’ switch, and the resulting project file is as follows (only the
Compiler package is shown):

package Compiler is
for Default_Switches ("Ada") use ("-O2");

end Compiler;

Switches:
in some cases, we might want to use specific switches for one or
more files. For instance, compiling ‘proc.adb’ might not be possible
at high level of optimization because of a compiler issue. In such a
case, the Switches attribute (indexed on the file name) can be used
and will override the switches defined by Default Switches. Our
project file would become:

10

Chapter 1: GNAT Project Manager

package Compiler is
for Default_Switches ("Ada") use ("-O2");

for Switches ("proc.adb") use ("-O0");

end Compiler;

Switches may take a pattern as an index, such as in:
package Compiler is

for Default_Switches ("Ada") use ("-O2");

for Switches ("pkg*") use ("-O0");

end Compiler;

Sources ‘pkg.adb’ and ‘pkg-child.adb’ would be compiled with -O0,
not -O2.
Switches can also be given a language name as index instead of a file
name in which case it has the same semantics as Default Switches.
However, indexes with wild cards are never valid for language name.

Local Configuration Pragmas:
this attribute may specify the path of a file containing configuration
pragmas for use by the Ada compiler, such as pragma Restrictions
(No_Tasking). These pragmas will be used for all the sources of the
project.

The switches for the other tools are defined in a similar manner through the
Default Switches and Switches attributes, respectively in the Builder pack-
age (for gnatmake and gprbuild), the Binder package (binding Ada executables)
and the Linker package (for linking executables).

1.2.5 Compiling with Project Files
Now that our project files are written, let’s build our executable. Here is the
command we would use from the command line:

gnatmake -Pbuild

This will automatically build the executables specified through the Main at-
tribute: for each, it will compile or recompile the sources for which the object
file does not exist or is not up-to-date; it will then run the binder; and finally
run the linker to create the executable itself.

gnatmake only knows how to handle Ada files. By using gprbuild as a
builder, you could automatically manage C files the same way: create the file
‘utils.c’ in the ‘common’ directory, set the attribute Languages to "(Ada, C)",
and run

gprbuild -Pbuild

Gprbuild knows how to recompile the C files and will recompile them only if
one of their dependencies has changed. No direct indication on how to build

11

GPRbuild User’s Guide

the various elements is given in the project file, which describes the project
properties rather than a set of actions to be executed. Here is the invocation of
gprbuild when building a multi-language program:

$ gprbuild -Pbuild

gcc -c proc.adb

gcc -c pack.adb

gcc -c utils.c

gprbind proc

...

gcc proc.o -o proc

Notice the three steps described earlier:
• The first three gcc commands correspond to the compilation phase.
• The gprbind command corresponds to the post-compilation phase.
• The last gcc command corresponds to the final link.

The default output of GPRbuild’s execution is kept reasonably simple and easy
to understand. In particular, some of the less frequently used commands are
not shown, and some parameters are abbreviated. So it is not possible to rerun
the effect of the gprbuild command by cut-and-pasting its output. GPRbuild’s
option -v provides a much more verbose output which includes, among other
information, more complete compilation, post-compilation and link commands.

1.2.6 Executable File Names
By default, the executable name corresponding to a main file is computed from
the main source file name. Through the attribute Builder.Executable, it is
possible to change this default.

For instance, instead of building proc (or proc.exe on Windows), we could
configure our project file to build "proc1" (resp proc1.exe) with the following
addition:

project Build is

... -- same as before

package Builder is

for Executable ("proc.adb") use "proc1";

end Builder

end Build;

Attribute Executable Suffix, when specified, may change the suffix of the
executable files, when no attribute Executable applies: its value replace the
platform-specific executable suffix. The default executable suffix is empty on
UNIX and ".exe" on Windows.

It is also possible to change the name of the produced executable by using
the command line switch ‘-o’. When several mains are defined in the project, it
is not possible to use the ‘-o’ switch and the only way to change the names of
the executable is provided by Attributes Executable and Executable_Suffix.

12

Chapter 1: GNAT Project Manager

1.2.7 Avoid Duplication With Variables
To illustrate some other project capabilities, here is a slightly more complex
project using similar sources and a main program in C:

project C_Main is

for Languages use ("Ada", "C");

for Source_Dirs use ("common");

for Object_Dir use "obj";

for Main use ("main.c");

package Compiler is

C_Switches := ("-pedantic");

for Default_Switches ("C") use C_Switches;

for Default_Switches ("Ada") use ("-gnaty");

for Switches ("main.c") use C_Switches & ("-g");

end Compiler;

end C_Main;

This project has many similarities with the previous one. As expected, its Main
attribute now refers to a C source. The attribute Exec Dir is now omitted, thus
the resulting executable will be put in the directory ‘obj’.

The most noticeable difference is the use of a variable in the Compiler pack-
age to store settings used in several attributes. This avoids text duplication,
and eases maintenance (a single place to modify if we want to add new switches
for C files). We will revisit the use of variables in the context of scenarios (see
Section 1.4 [Scenarios in Projects], page 21).

In this example, we see how the file ‘main.c’ can be compiled with the
switches used for all the other C files, plus ‘-g’. In this specific situation the use
of a variable could have been replaced by a reference to the Default_Switches
attribute:

for Switches ("c_main.c") use Compiler’Default_Switches ("C") & ("-g");

Note the tick (’) used to refer to attributes defined in a package.
Here is the output of the GPRbuild command using this project:
$gprbuild -Pc_main

gcc -c -pedantic -g main.c

gcc -c -gnaty proc.adb

gcc -c -gnaty pack.adb

gcc -c -pedantic utils.c

gprbind main.bexch

...

gcc main.o -o main

The default switches for Ada sources, the default switches for C sources (in the
compilation of ‘lib.c’), and the specific switches for ‘main.c’ have all been taken
into account.

13

GPRbuild User’s Guide

1.2.8 Naming Schemes
Sometimes an Ada software system is ported from one compilation environment
to another (say GNAT), and the file are not named using the default GNAT
conventions. Instead of changing all the file names, which for a variety of
reasons might not be possible, you can define the relevant file naming scheme
in the Naming package of your project file.

The naming scheme has two distinct goals for the project manager: it allows
finding of source files when searching in the source directories, and given a
source file name it makes it possible to guess the associated language, and thus
the compiler to use.

Note that the use by the Ada compiler of pragmas Source File Name is
not supported when using project files. You must use the features described
in this paragraph. You can however specify other configuration pragmas (see
Section 2.1.3 [Specifying Configuration Pragmas], page 67).

The following attributes can be defined in package Naming:

Casing: Its value must be one of "lowercase" (the default if unspeci-
fied), "uppercase" or "mixedcase". It describes the casing of file
names with regards to the Ada unit name. Given an Ada unit
My Unit, the file name will respectively be ‘my_unit.adb’ (lower-
case), ‘MY_UNIT.ADB’ (uppercase) or ‘My_Unit.adb’ (mixedcase). On
Windows, file names are case insensitive, so this attribute is irrele-
vant.

Dot Replacement:
This attribute specifies the string that should replace the "." in unit
names. Its default value is "-" so that a unit Parent.Child is ex-
pected to be found in the file ‘parent-child.adb’. The replacement
string must satisfy the following requirements to avoid ambiguities
in the naming scheme:

- It must not be empty
- It cannot start or end with an alphanumeric character
- It cannot be a single underscore
- It cannot start with an underscore followed by an alphanumeric
- It cannot contain a dot ’.’ except if the entire string is "."

Spec Suffix and Specification Suffix:
For Ada, these attributes give the suffix used in file names that
contain specifications. For other languages, they give the extension
for files that contain declaration (header files in C for instance).
The attribute is indexed on the language. The two attributes are
equivalent, but the latter is obsolescent. If Spec_Suffix ("Ada") is

14

Chapter 1: GNAT Project Manager

not specified, then the default is ".ads". The value must satisfy the
following requirements:

- It must not be empty
- It cannot start with an alphanumeric character
- It cannot start with an underscore followed by an alphanumeric

character
- It must include at least one dot

Body Suffix and Implementation Suffix:
These attributes give the extension used for file names that contain
code (bodies in Ada). They are indexed on the language. The second
version is obsolescent and fully replaced by the first attribute.
These attributes must satisfy the same requirements as Spec_
Suffix. In addition, they must be different from any of the values
in Spec_Suffix. If Body_Suffix ("Ada") is not specified, then the
default is ".adb".
If Body_Suffix ("Ada") and Spec_Suffix ("Ada") end with the
same string, then a file name that ends with the longest of these two
suffixes will be a body if the longest suffix is Body_Suffix ("Ada")
or a spec if the longest suffix is Spec_Suffix ("Ada").
If the suffix does not start with a ’.’, a file with a name exactly equal
to the suffix will also be part of the project (for instance if you define
the suffix as Makefile, a file called ‘Makefile’ will be part of the
project. This capability is usually not interesting when building.
However, it might become useful when a project is also used to find
the list of source files in an editor, like the GNAT Programming
System (GPS).

Separate Suffix:
This attribute is specific to Ada. It denotes the suffix used in file
names that contain separate bodies. If it is not specified, then it
defaults to same value as Body_Suffix ("Ada"). The same rules
apply as for the Body_Suffix attribute. The only accepted index is
"Ada".

Spec or Specification:
This attribute Spec can be used to define the source file name for a
given Ada compilation unit’s spec. The index is the literal name of
the Ada unit (case insensitive). The value is the literal base name
of the file that contains this unit’s spec (case sensitive or insensi-
tive depending on the operating system). This attribute allows the
definition of exceptions to the general naming scheme, in case some
files do not follow the usual convention.

15

GPRbuild User’s Guide

When a source file contains several units, the relative position of the
unit can be indicated. The first unit in the file is at position 1

for Spec ("MyPack.MyChild") use "mypack.mychild.spec";

for Spec ("top") use "foo.a" at 1;

for Spec ("foo") use "foo.a" at 2;

Body or Implementation:
These attribute play the same role as Spec for Ada bodies.

Specification Exceptions and Implementation Exceptions:
These attributes define exceptions to the naming scheme for lan-
guages other than Ada. They are indexed on the language name,
and contain a list of file names respectively for headers and source
code.

For example, the following package models the Apex file naming rules:
package Naming is

for Casing use "lowercase";

for Dot_Replacement use ".";

for Spec_Suffix ("Ada") use ".1.ada";

for Body_Suffix ("Ada") use ".2.ada";

end Naming;

1.3 Organizing Projects into Subsystems
A subsystem is a coherent part of the complete system to be built. It is
represented by a set of sources and one single object directory. A system can
be composed of a single subsystem when it is simple as we have seen in the
first section. Complex systems are usually composed of several interdependent
subsystems. A subsystem is dependent on another subsystem if knowledge of
the other one is required to build it, and in particular if visibility on some of
the sources of this other subsystem is required. Each subsystem is usually
represented by its own project file.

In this section, the previous example is being extended. Let’s assume some
sources of our Build project depend on other sources. For instance, when build-
ing a graphical interface, it is usual to depend upon a graphical library toolkit
such as GtkAda. Furthermore, we also need sources from a logging module we
had previously written.

1.3.1 Project Dependencies
GtkAda comes with its own project file (appropriately called ‘gtkada.gpr’), and
we will assume we have already built a project called ‘logging.gpr’ for the
logging module. With the information provided so far in ‘build.gpr’, building
the application would fail with an error indicating that the gtkada and logging
units that are relied upon by the sources of this project cannot be found.

16

Chapter 1: GNAT Project Manager

This is easily solved by adding the following with clauses at the beginning
of our project:

with "gtkada.gpr";

with "a/b/logging.gpr";

project Build is

... -- as before

end Build;

When such a project is compiled, gnatmake will automatically check the other
projects and recompile their sources when needed. It will also recompile the
sources from Build when needed, and finally create the executable. In some
cases, the implementation units needed to recompile a project are not available,
or come from some third-party and you do not want to recompile it yourself. In
this case, the attribute Externally Built to "true" can be set, indicating to
the builder that this project can be assumed to be up-to-date, and should not
be considered for recompilation. In Ada, if the sources of this externally built
project were compiled with another version of the compiler or with incompatible
options, the binder will issue an error.

The project’s with clause has several effects. It provides source visibility
between projects during the compilation process. It also guarantees that the
necessary object files from Logging and GtkAda are available when linking
Build.

As can be seen in this example, the syntax for importing projects is similar
to the syntax for importing compilation units in Ada. However, project files
use literal strings instead of names, and the with clause identifies project files
rather than packages.

Each literal string after with is the path (absolute or relative) to a project
file. The .gpr extension is optional, although we recommend adding it. If no
extension is specified, and no project file with the ‘.gpr’ extension is found, then
the file is searched for exactly as written in the with clause, that is with no
extension.

As mentioned above, the path after a with has to be a literal string, and you
cannot use concatenation, or lookup the value of external variables to change the
directories from which a project is loaded. A solution if you need something like
this is to use aggregate projects (see Section 1.7 [Aggregate Projects], page 35).

When a relative path or a base name is used, the project files are searched
relative to each of the directories in the project path. This path includes all
the directories found with the following algorithm, in that order, as soon as a
matching file is found, the search stops:
• First, the file is searched relative to the directory that contains the current

project file.
• Then it is searched relative to all the directories specified in the environ-

ment variables GPR PROJECT PATH and ADA PROJECT PATH (in

17

GPRbuild User’s Guide

that order) if they exist. The former is recommended, the latter is kept for
backward compatibility.

• Finally, it is searched relative to the default project directories. Such di-
rectories depends on the tool used. The different locations searched in the
specified order are:
• ‘<prefix>/<target>/lib/gnat’ (for gnatmake in all cases, and for

gprbuild if option ‘--target’ is specified)
• ‘<prefix>/share/gpr/’ (for gnatmake and gprbuild)
• ‘<prefix>/lib/gnat/’ (for gnatmake and gprbuild)

In our example, ‘gtkada.gpr’ is found in the predefined directory if it was
installed at the same root as GNAT.

Some tools also support extending the project path from the command line,
generally through the ‘-aP’. You can see the value of the project path by using
the gnatls -v command.

Any symbolic link will be fully resolved in the directory of the importing
project file before the imported project file is examined.

Any source file in the imported project can be used by the sources of the im-
porting project, transitively. Thus if A imports B, which imports C, the sources of
A may depend on the sources of C, even if A does not import C explicitly. However,
this is not recommended, because if and when B ceases to import C, some sources
in A will no longer compile. gprbuild has a switch ‘--no-indirect-imports’
that will report such indirect dependencies.

One very important aspect of a project hierarchy is that a given source can
only belong to one project (otherwise the project manager would not know
which settings apply to it and when to recompile it). It means that different
project files do not usually share source directories or when they do, they need
to specify precisely which project owns which sources using attribute Source_
Files or equivalent. By contrast, 2 projects can each own a source with the
same base file name as long as they live in different directories. The latter is
not true for Ada Sources because of the correlation between source files and Ada
units.

1.3.2 Cyclic Project Dependencies
Cyclic dependencies are mostly forbidden: if A imports B (directly or indirectly)
then B is not allowed to import A. However, there are cases when cyclic depen-
dencies would be beneficial. For these cases, another form of import between
projects exists: the limited with. A project A that imports a project B with
a straight with may also be imported, directly or indirectly, by B through a
limited with.

18

Chapter 1: GNAT Project Manager

The difference between straight with and limited with is that the name of
a project imported with a limited with cannot be used in the project importing
it. In particular, its packages cannot be renamed and its variables cannot be
referred to.

with "b.gpr";

with "c.gpr";

project A is

For Exec_Dir use B’Exec_Dir; -- ok

end A;

limited with "a.gpr"; -- Cyclic dependency: A -> B -> A

project B is

For Exec_Dir use A’Exec_Dir; -- not ok

end B;

with "d.gpr";

project C is

end C;

limited with "a.gpr"; -- Cyclic dependency: A -> C -> D -> A

project D is

For Exec_Dir use A’Exec_Dir; -- not ok

end D;

1.3.3 Sharing Between Projects
When building an application, it is common to have similar needs in several of
the projects corresponding to the subsystems under construction. For instance,
they will all have the same compilation switches.

As seen before (see Section 1.2.4 [Tools Options in Project Files], page 9),
setting compilation switches for all sources of a subsystem is simple: it is just a
matter of adding a Compiler.Default_Switches attribute to each project files
with the same value. Of course, that means duplication of data, and both places
need to be changed in order to recompile the whole application with different
switches. It can become a real problem if there are many subsystems and thus
many project files to edit.

There are two main approaches to avoiding this duplication:
• Since ‘build.gpr’ imports ‘logging.gpr’, we could change it to reference the

attribute in Logging, either through a package renaming, or by referencing
the attribute. The following example shows both cases:

project Logging is

package Compiler is

for Switches ("Ada") use ("-O2");

end Compiler;

package Binder is

for Switches ("Ada") use ("-E");

19

GPRbuild User’s Guide

end Binder;

end Logging;

with "logging.gpr";

project Build is

package Compiler renames Logging.Compiler;

package Binder is

for Switches ("Ada") use Logging.Binder’Switches ("Ada");

end Binder;

end Build;

The solution used for Compiler gets the same value for all attributes of the
package, but you cannot modify anything from the package (adding extra
switches or some exceptions). The second version is more flexible, but more
verbose.
If you need to refer to the value of a variable in an imported project, rather
than an attribute, the syntax is similar but uses a "." rather than an
apostrophe. For instance:

with "imported";

project Main is

Var1 := Imported.Var;

end Main;

• The second approach is to define the switches in a third project. That project
is setup without any sources (so that, as opposed to the first example, none
of the project plays a special role), and will only be used to define the
attributes. Such a project is typically called ‘shared.gpr’.

abstract project Shared is

for Source_Files use (); -- no project

package Compiler is

for Switches ("Ada") use ("-O2");

end Compiler;

end Shared;

with "shared.gpr";

project Logging is

package Compiler renames Shared.Compiler;

end Logging;

with "shared.gpr";

project Build is

package Compiler renames Shared.Compiler;

end Build;

As for the first example, we could have chosen to set the attributes one by
one rather than to rename a package. The reason we explicitly indicate

20

Chapter 1: GNAT Project Manager

that Shared has no sources is so that it can be created in any directory and
we are sure it shares no sources with Build or Logging, which of course
would be invalid.
Note the additional use of the abstract qualifier in ‘shared.gpr’. This
qualifier is optional, but helps convey the message that we do not intend
this project to have sources (see Section 1.9.2 [Qualified Projects], page 47
for more qualifiers).

1.3.4 Global Attributes
We have already seen many examples of attributes used to specify a special
option of one of the tools involved in the build process. Most of those attributes
are project specific. That it to say, they only affect the invocation of tools on the
sources of the project where they are defined.

There are a few additional attributes that apply to all projects in a hierarchy
as long as they are defined on the "main" project. The main project is the
project explicitly mentioned on the command-line. The project hierarchy is the
"with"-closure of the main project.

Here is a list of commonly used global attributes:

Builder.Global Configuration Pragmas:
This attribute points to a file that contains configuration pragmas
to use when building executables. These pragmas apply for all exe-
cutables built from this project hierarchy. As we have seen before,
additional pragmas can be specified on a per-project basis by setting
the Compiler.Local_Configuration_Pragmas attribute.

Builder.Global Compilation Switches:
This attribute is a list of compiler switches to use when compiling
any source file in the project hierarchy. These switches are used in
addition to the ones defined in the Compiler package, which only
apply to the sources of the corresponding project. This attribute is
indexed on the name of the language.

Using such global capabilities is convenient. It can also lead to unexpected
behavior. Especially when several subsystems are shared among different main
projects and the different global attributes are not compatible. Note that using
aggregate projects can be a safer and more powerful replacement to global
attributes.

1.4 Scenarios in Projects
Various aspects of the projects can be modified based on scenarios. These are
user-defined modes that change the behavior of a project. Typical examples
are the setup of platform-specific compiler options, or the use of a debug and a

21

GPRbuild User’s Guide

release mode (the former would activate the generation of debug information,
when the second will focus on improving code optimization).

Let’s enhance our example to support a debug and a release modes.The
issue is to let the user choose what kind of system he is building: use ‘-g’ as
compiler switches in debug mode and ‘-O2’ in release mode. We will also setup
the projects so that we do not share the same object directory in both modes,
otherwise switching from one to the other might trigger more recompilations
than needed or mix objects from the 2 modes.

One naive approach is to create two different project files, say
‘build_debug.gpr’ and ‘build_release.gpr’, that set the appropriate
attributes as explained in previous sections. This solution does not scale well,
because in presence of multiple projects depending on each other, you will also
have to duplicate the complete hierarchy and adapt the project files to point to
the right copies.

Instead, project files support the notion of scenarios controlled by external
values. Such values can come from several sources (in decreasing order of
priority):

Command line:
When launching gnatmake or gprbuild, the user can pass extra ‘-X’
switches to define the external value. In our case, the command line
might look like

gnatmake -Pbuild.gpr -Xmode=debug

or gnatmake -Pbuild.gpr -Xmode=release

Environment variables:
When the external value does not come from the command line, it
can come from the value of environment variables of the appropriate
name. In our case, if an environment variable called "mode" exist,
its value will be taken into account.

External function second parameter
We now need to get that value in the project. The general form is to use the

predefined function external which returns the current value of the external.
For instance, we could setup the object directory to point to either ‘obj/debug’
or ‘obj/release’ by changing our project to

project Build is

for Object_Dir use "obj/" & external ("mode", "debug");

... -- as before

end Build;

The second parameter to external is optional, and is the default value to use if
"mode" is not set from the command line or the environment.

22

Chapter 1: GNAT Project Manager

In order to set the switches according to the different scenarios, other con-
structs have to be introduced such as typed variables and case statements.

A typed variable is a variable that can take only a limited number of
values, similar to an enumeration in Ada. Such a variable can then be used in
a case statement and create conditional sections in the project. The following
example shows how this can be done:

project Build is

type Mode_Type is ("debug", "release"); -- all possible values

Mode : Mode_Type := external ("mode", "debug"); -- a typed variable

package Compiler is

case Mode is

when "debug" =>

for Switches ("Ada") use ("-g");

when "release" =>

for Switches ("Ada") use ("-O2");

end case;

end Compiler;

end Build;

The project has suddenly grown in size, but has become much more flexible.
Mode_Type defines the only valid values for the mode variable. If any other
value is read from the environment, an error is reported and the project is
considered as invalid.

The Mode variable is initialized with an external value defaulting to "debug".
This default could be omitted and that would force the user to define the value.
Finally, we can use a case statement to set the switches depending on the
scenario the user has chosen.

Most aspects of the projects can depend on scenarios. The notable exception
are project dependencies (with clauses), which may not depend on a scenario.

Scenarios work the same way with project hierarchies: you can either
duplicate a variable similar to Mode in each of the project (as long as the first
argument to external is always the same and the type is the same), or simply
set the variable in the ‘shared.gpr’ project (see Section 1.3.3 [Sharing Between
Projects], page 19).

1.5 Library Projects
So far, we have seen examples of projects that create executables. However,
it is also possible to create libraries instead. A library is a specific type of
subsystem where, for convenience, objects are grouped together using system-
specific means such as archives or windows DLLs.

Library projects provide a system- and language-independent way of building
both static and dynamic libraries. They also support the concept of stand-

23

GPRbuild User’s Guide

alone libraries (SAL) which offers two significant properties: the elaboration
(e.g. initialization) of the library is either automatic or very simple; a change
in the implementation part of the library implies minimal post-compilation ac-
tions on the complete system and potentially no action at all for the rest of the
system in the case of dynamic SALs.

The GNAT Project Manager takes complete care of the library build, rebuild
and installation tasks, including recompilation of the source files for which
objects do not exist or are not up to date, assembly of the library archive, and
installation of the library (i.e., copying associated source, object and ‘ALI’ files
to the specified location).

1.5.1 Building Libraries
Let’s enhance our example and transform the logging subsystem into a library.
In order to do so, a few changes need to be made to ‘logging.gpr’. A number of
specific attributes needs to be defined: at least Library_Name and Library_Dir;
in addition, a number of other attributes can be used to specify specific aspects
of the library. For readability, it is also recommended (although not mandatory),
to use the qualifier library in front of the project keyword.

Library Name:
This attribute is the name of the library to be built. There is no
restriction on the name of a library imposed by the project manager,
except for stand-alone libraries whose names must follow the syntax
of Ada identifiers; however, there may be system specific restrictions
on the name. In general, it is recommended to stick to alphanumeric
characters (and possibly single underscores) to help portability.

Library Dir:
This attribute is the path (absolute or relative) of the directory where
the library is to be installed. In the process of building a library, the
sources are compiled, the object files end up in the explicit or implicit
Object_Dir directory. When all sources of a library are compiled,
some of the compilation artifacts, including the library itself, are
copied to the library dir directory. This directory must exists and
be writable. It must also be different from the object directory so
that cleanup activities in the Library Dir do not affect recompilation
needs.

Here is the new version of ‘logging.gpr’ that makes it a library:
library project Logging is -- "library" is optional

for Library_Name use "logging"; -- will create "liblogging.a" on Unix

for Object_Dir use "obj";

for Library_Dir use "lib"; -- different from object_dir

end Logging;

24

Chapter 1: GNAT Project Manager

Once the above two attributes are defined, the library project is valid and is
enough for building a library with default characteristics. Other library-related
attributes can be used to change the defaults:

Library Kind:
The value of this attribute must be either "static", "dynamic" or
"relocatable" (the latter is a synonym for dynamic). It indicates
which kind of library should be built (the default is to build a static
library, that is an archive of object files that can potentially be linked
into a static executable). When the library is set to be dynamic, a
separate image is created that will be loaded independently, usually
at the start of the main program execution. Support for dynamic
libraries is very platform specific, for instance on Windows it takes
the form of a DLL while on GNU/Linux, it is a dynamic elf image
whose suffix is usually ‘.so’. Library project files, on the other
hand, can be written in a platform independent way so that the
same project file can be used to build a library on different operating
systems.

If you need to build both a static and a dynamic library, it is rec-
ommended use two different object directories, since in some cases
some extra code needs to be generated for the latter. For such cases,
one can either define two different project files, or a single one which
uses scenarios to indicate the various kinds of library to be built and
their corresponding object dir.

Library ALI Dir:
This attribute may be specified to indicate the directory where the
ALI files of the library are installed. By default, they are copied
into the Library_Dir directory, but as for the executables where we
have a separate Exec_Dir attribute, you might want to put them in
a separate directory since there can be hundreds of them. The same
restrictions as for the Library_Dir attribute apply.

Library Version:
This attribute is platform dependent, and has no effect on VMS
and Windows. On Unix, it is used only for dynamic libraries as
the internal name of the library (the "soname"). If the library file
name (built from the Library_Name) is different from the Library_
Version, then the library file will be a symbolic link to the actual
file whose name will be Library_Version. This follows the usual
installation schemes for dynamic libraries on many Unix systems.

25

GPRbuild User’s Guide

project Logging is

Version := "1";

for Library_Dir use "lib";

for Library_Name use "logging";

for Library_Kind use "dynamic";

for Library_Version use "liblogging.so." & Version;

end Logging;

After the compilation, the directory ‘lib’ will contain both
a ‘libdummy.so.1’ library and a symbolic link to it called
‘libdummy.so’.

Library GCC:
This attribute is the name of the tool to use instead of "gcc" to
link shared libraries. A common use of this attribute is to define a
wrapper script that accomplishes specific actions before calling gcc
(which itself is calling the linker to build the library image).

Library Options:
This attribute may be used to specify additional switches (last
switches) when linking a shared library.

Leading Library Options:
This attribute, that is taken into account only by gprbuild, may
be used to specified leading options (first switches) when linking a
shared library.

Linker.Linker Options:
This attribute specifies additional switches to be given to the linker
when linking an executable. It is ignored when defined in the
main project and taken into account in all other projects that are
imported directly or indirectly. These switches complement the
Linker.Switches defined in the main project. This is useful when
a particular subsystem depends on an external library: adding this
dependency as a Linker_Options in the project of the subsystem is
more convenient than adding it to all the Linker.Switches of the
main projects that depend upon this subsystem.

1.5.2 Using Library Projects
When the builder detects that a project file is a library project file, it recompiles
all sources of the project that need recompilation and rebuild the library if any
of the sources have been recompiled. It then groups all object files into a single
file, which is a shared or a static library. This library can later on be linked
with multiple executables. Note that the use of shard libraries reduces the size
of the final executable and can also reduce the memory footprint at execution
time when the library is shared among several executables.

26

Chapter 1: GNAT Project Manager

It is also possible to build multi-language libraries. When using gprbuild
as a builder, multi-language library projects allow naturally the creation of
multi-language libraries . gnatmake, does not try to compile non Ada sources.
However, when the project is multi-language, it will automatically link all object
files found in the object directory, whether or not they were compiled from an
Ada source file. This specific behavior does not apply to Ada-only projects which
only take into account the objects corresponding to the sources of the project.

A non-library project can import a library project. When the builder is
invoked on the former, the library of the latter is only rebuilt when absolutely
necessary. For instance, if a unit of the library is not up-to-date but non of
the executables need this unit, then the unit is not recompiled and the library
is not reassembled. For instance, let’s assume in our example that logging
has the following sources: ‘log1.ads’, ‘log1.adb’, ‘log2.ads’ and ‘log2.adb’. If
‘log1.adb’ has been modified, then the library ‘liblogging’ will be rebuilt when
compiling all the sources of Build only if ‘proc.ads’, ‘pack.ads’ or ‘pack.adb’
include a "with Log1".

To ensure that all the sources in the Logging library are up to date, and that
all the sources of Build are also up to date, the following two commands needs
to be used:

gnatmake -Plogging.gpr

gnatmake -Pbuild.gpr

All ‘ALI’ files will also be copied from the object directory to the library directory.
To build executables, gnatmake will use the library rather than the individual
object files.

Library projects can also be useful to describe a library that need to be used
but, for some reason, cannot be rebuilt. For instance, it is the case when some
of the library sources are not available. Such library projects need simply to
use the Externally_Built attribute as in the example below:

library project Extern_Lib is

for Languages use ("Ada", "C");

for Source_Dirs use ("lib_src");

for Library_Dir use "lib2";

for Library_Kind use "dynamic";

for Library_Name use "l2";

for Externally_Built use "true"; -- <<<<

end Extern_Lib;

In the case of externally built libraries, the Object_Dir attribute does not need
to be specified because it will never be used.

The main effect of using such an externally built library project is mostly
to affect the linker command in order to reference the desired library. It can
also be achieved by using Linker.Linker_Options or Linker.Switches in the
project corresponding to the subsystem needing this external library. This
latter method is more straightforward in simple cases but when several sub-

27

GPRbuild User’s Guide

systems depend upon the same external library, finding the proper place for the
Linker.Linker_Options might not be easy and if it is not placed properly, the
final link command is likely to present ordering issues. In such a situation, it
is better to use the externally built library project so that all other subsystems
depending on it can declare this dependency thanks to a project with clause,
which in turn will trigger the builder to find the proper order of libraries in the
final link command.

1.5.3 Stand-alone Library Projects
A stand-alone library is a library that contains the necessary code to elabo-
rate the Ada units that are included in the library. A stand-alone library is a
convenient way to add an Ada subsystem to a more global system whose main
is not in Ada since it makes the elaboration of the Ada part mostly transparent.
However, stand-alone libraries are also useful when the main is in Ada: they
provide a means for minimizing relinking & redeployment of complex systems
when localized changes are made.

The name of a stand-alone library, specified with attribute Library_Name,
must have the syntax of an Ada identifier.

The most prominent characteristic of a stand-alone library is that it offers a
distinction between interface units and implementation units. Only the former
are visible to units outside the library. A stand-alone library project is thus char-
acterised by a third attribute, usually Library Interface, in addition to the two
attributes that make a project a Library Project (Library_Name and Library_
Dir). This third attribute may also be Interfaces. Library Interface only
works when the interface is in Ada and takes a list of units as parameter.
Interfaces works for any supported language and takes a list of sources as
parameter.
Library Interface:

This attribute defines an explicit subset of the units of the project.
Units from projects importing this library project may only "with"
units whose sources are listed in the Library_Interface. Other
sources are considered implementation units.

for Library_Dir use "lib";

for Library_Name use "loggin";

for Library_Interface use ("lib1", "lib2"); -- unit names

Interfaces
This attribute defines an explicit subset of the source files of a
project. Sources from projects importing this project, can only de-
pend on sources from this subset. This attribute can be used on non
library projects. It can also be used as a replacement for attribute
Library_Interface, in which case, units have to be replaced by
source files. For multi-language library projects, it is the only way

28

Chapter 1: GNAT Project Manager

to make the project a Stand-Alone Library project whose interface
is not purely Ada.

Library Standalone:
This attribute defines the kind of standalone library to build. Val-
ues are either standard (the default), no or encapsulated. When
standard is used the code to elaborate and finalize the library is
embedded, when encapsulated is used the library can furthermore
only depends on static libraries (including the GNAT runtime). This
attribute can be set to no to make it clear that the library should
not be standalone in which case the Library_Interface should not
defined.

for Library_Dir use "lib";

for Library_Name use "loggin";

for Library_Interface use ("lib1", "lib2"); -- unit names

for Library_Standalone use "encapsulated";

In order to include the elaboration code in the stand-alone library, the binder
is invoked on the closure of the library units creating a package whose name
depends on the library name (b˜logging.ads/b in the example). This binder-
generated package includes initialization and finalization procedures whose
names depend on the library name (logginginit and loggingfinal in the
example). The object corresponding to this package is included in the library.

Library Auto Init:
A dynamic stand-alone Library is automatically initialized if au-
tomatic initialization of Stand-alone Libraries is supported on the
platform and if attribute Library Auto Init is not specified or is
specified with the value "true". A static Stand-alone Library is
never automatically initialized. Specifying "false" for this attribute
prevent automatic initialization.

When a non-automatically initialized stand-alone library is used in
an executable, its initialization procedure must be called before any
service of the library is used. When the main subprogram is in Ada,
it may mean that the initialization procedure has to be called during
elaboration of another package.

Library Dir:
For a stand-alone library, only the ‘ALI’ files of the interface units
(those that are listed in attribute Library_Interface) are copied to
the library directory. As a consequence, only the interface units may
be imported from Ada units outside of the library. If other units are
imported, the binding phase will fail.

29

GPRbuild User’s Guide

Binder.Default Switches:
When a stand-alone library is bound, the switches that are specified
in the attribute Binder.Default Switches ("Ada") are used in the
call to gnatbind.

Library Src Dir:
This attribute defines the location (absolute or relative to the project
directory) where the sources of the interface units are copied at
installation time. These sources includes the specs of the interface
units along with the closure of sources necessary to compile them
successfully. That may include bodies and subunits, when pragmas
Inline are used, or when there is a generic units in the spec. This
directory cannot point to the object directory or one of the source
directories, but it can point to the library directory, which is the
default value for this attribute.

Library Symbol Policy:
This attribute controls the export of symbols and, on some platforms
(like VMS) that have the notions of major and minor IDs built in the
library files, it controls the setting of these IDs. It is not supported
on all platforms (where it will just have no effect). It may have one
of the following values:

- "autonomous" or "default": exported symbols are not con-
trolled

- "compliant": if attribute Library Reference Symbol File
is not defined, then it is equivalent to policy "autonomous".
If there are exported symbols in the reference symbol file that
are not in the object files of the interfaces, the major ID of the
library is increased. If there are symbols in the object files
of the interfaces that are not in the reference symbol file, these
symbols are put at the end of the list in the newly created symbol
file and the minor ID is increased.

- "controlled": the attribute Library Reference Symbol File
must be defined. The library will fail to build if the exported
symbols in the object files of the interfaces do not match exactly
the symbol in the symbol file.

- "restricted": The attribute Library Symbol File must be
defined. The library will fail to build if there are symbols in the
symbol file that are not in the exported symbols of the object
files of the interfaces. Additional symbols in the object files are
not added to the symbol file.

- "direct": The attribute Library Symbol File must be de-
fined and must designate an existing file in the object directory.

30

Chapter 1: GNAT Project Manager

This symbol file is passed directly to the underlying linker with-
out any symbol processing.

Library Reference Symbol File
This attribute may define the path name of a reference symbol file
that is read when the symbol policy is either "compliant" or "con-
trolled", on platforms that support symbol control, such as VMS,
when building a stand-alone library. The path may be an absolute
path or a path relative to the project directory.

Library Symbol File
This attribute may define the name of the symbol file to be created
when building a stand-alone library when the symbol policy is either
"compliant", "controlled" or "restricted", on platforms that support
symbol control, such as VMS. When symbol policy is "direct", then
a file with this name must exist in the object directory.

1.5.4 Installing a library with project files
When using project files, library installation is part of the library build process.
Thus no further action is needed in order to make use of the libraries that are
built as part of the general application build. A usable version of the library is
installed in the directory specified by the Library_Dir attribute of the library
project file.

You may want to install a library in a context different from where the
library is built. This situation arises with third party suppliers, who may want
to distribute a library in binary form where the user is not expected to be
able to recompile the library. The simplest option in this case is to provide a
project file slightly different from the one used to build the library, by using the
externally_built attribute. Section 1.5.2 [Using Library Projects], page 26

1.6 Project Extension
During development of a large system, it is sometimes necessary to use modified
versions of some of the source files, without changing the original sources. This
can be achieved through the project extension facility.

Suppose for instance that our example Build project is built every night for
the whole team, in some shared directory. A developer usually need to work
on a small part of the system, and might not want to have a copy of all the
sources and all the object files (mostly because that would require too much
disk space, time to recompile everything). He prefers to be able to override
some of the source files in his directory, while taking advantage of all the object
files generated at night.

Another example can be taken from large software systems, where it is com-
mon to have multiple implementations of a common interface; in Ada terms,

31

GPRbuild User’s Guide

multiple versions of a package body for the same spec. For example, one imple-
mentation might be safe for use in tasking programs, while another might only
be used in sequential applications. This can be modeled in GNAT using the
concept of project extension. If one project (the “child”) extends another project
(the “parent”) then by default all source files of the parent project are inherited
by the child, but the child project can override any of the parent’s source files
with new versions, and can also add new files or remove unnecessary ones. This
facility is the project analog of a type extension in object-oriented programming.
Project hierarchies are permitted (an extending project may itself be extended),
and a project that extends a project can also import other projects.

A third example is that of using project extensions to provide different ver-
sions of the same system. For instance, assume that a Common project is used by
two development branches. One of the branches has now been frozen, and no
further change can be done to it or to Common. However, the other development
branch still needs evolution of Common. Project extensions provide a flexible
solution to create a new version of a subsystem while sharing and reusing as
much as possible from the original one.

A project extension inherits implicitly all the sources and objects from the
project it extends. It is possible to create a new version of some of the sources in
one of the additional source dirs of the extending project. Those new versions
hide the original versions. Adding new sources or removing existing ones is also
possible. Here is an example on how to extend the project Build from previous
examples:

project Work extends "../bld/build.gpr" is

end Work;

The project after extends is the one being extended. As usual, it can be specified
using an absolute path, or a path relative to any of the directories in the project
path (see Section 1.3.1 [Project Dependencies], page 16). This project does not
specify source or object directories, so the default value for these attribute will
be used that is to say the current directory (where project Work is placed). We
can already compile that project with

gnatmake -Pwork

If no sources have been placed in the current directory, this command won’t do
anything, since this project does not change the sources it inherited from Build,
therefore all the object files in Build and its dependencies are still valid and
are reused automatically.

Suppose we now want to supply an alternate version of ‘pack.adb’ but use
the existing versions of ‘pack.ads’ and ‘proc.adb’. We can create the new file
Work’s current directory (likely by copying the one from the Build project and
making changes to it. If new packages are needed at the same time, we simply
create new files in the source directory of the extending project.

32

Chapter 1: GNAT Project Manager

When we recompile, gnatmake will now automatically recompile this file
(thus creating ‘pack.o’ in the current directory) and any file that depends on it
(thus creating ‘proc.o’). Finally, the executable is also linked locally.

Note that we could have obtained the desired behavior using project import
rather than project inheritance. A base project would contain the sources for
‘pack.ads’ and ‘proc.adb’, and Work would import base and add ‘pack.adb’. In
this scenario, base cannot contain the original version of ‘pack.adb’ otherwise
there would be 2 versions of the same unit in the closure of the project and this
is not allowed. Generally speaking, it is not recommended to put the spec and
the body of a unit in different projects since this affects their autonomy and
reusability.

In a project file that extends another project, it is possible to indicate that
an inherited source is not part of the sources of the extending project. This is
necessary sometimes when a package spec has been overridden and no longer
requires a body: in this case, it is necessary to indicate that the inherited body
is not part of the sources of the project, otherwise there will be a compilation
error when compiling the spec.

For that purpose, the attribute Excluded Source Files is used. Its value
is a list of file names. It is also possible to use attribute Excluded_Source_
List_File. Its value is the path of a text file containing one file name per
line.

project Work extends "../bld/build.gpr" is

for Source_Files use ("pack.ads");

-- New spec of Pkg does not need a completion

for Excluded_Source_Files use ("pack.adb");

end Work;

All packages that are not declared in the extending project are inherited
from the project being extended, with their attributes, with the exception of
Linker’Linker_Options which is never inherited. In particular, an extending
project retains all the switches specified in the project being extended.

At the project level, if they are not declared in the extending project, some
attributes are inherited from the project being extended. They are: Languages,
Main (for a root non library project) and Library_Name (for a project extending
a library project)

1.6.1 Project Hierarchy Extension
One of the fundamental restrictions in project extension is the following: A
project is not allowed to import directly or indirectly at the same time
an extending project and one of its ancestors.

By means of example, consider the following hierarchy of projects.
a.gpr contains package A1

b.gpr, imports a.gpr and contains B1, which depends on A1

33

GPRbuild User’s Guide

c.gpr, imports b.gpr and contains C1, which depends on B1

If we want to locally extend the packages A1 and C1, we need to create several
extending projects:

a_ext.gpr which extends a.gpr, and overrides A1

b_ext.gpr which extends b.gpr and imports a_ext.gpr

c_ext.gpr which extends c.gpr, imports b_ext.gpr and overrides C1

project A_Ext extends "a.gpr" is

for Source_Files use ("a1.adb", "a1.ads");

end A_Ext;

with "a_ext.gpr";

project B_Ext extends "b.gpr" is

end B_Ext;

with "b_ext.gpr";

project C_Ext extends "c.gpr" is

for Source_Files use ("c1.adb");

end C_Ext;

The extension ‘b_ext.gpr’ is required, even though we are not overriding any
of the sources of ‘b.gpr’ because otherwise ‘c_expr.gpr’ would import ‘b.gpr’
which itself knows nothing about ‘a_ext.gpr’.

When extending a large system spanning multiple projects, it is often in-
convenient to extend every project in the hierarchy that is impacted by a small
change introduced in a low layer. In such cases, it is possible to create an
implicit extension of entire hierarchy using extends all relationship.

When the project is extended using extends all inheritance, all projects
that are imported by it, both directly and indirectly, are considered virtually
extended. That is, the project manager creates implicit projects that extend
every project in the hierarchy; all these implicit projects do not control sources
on their own and use the object directory of the "extending all" project.

It is possible to explicitly extend one or more projects in the hierarchy in
order to modify the sources. These extending projects must be imported by the
"extending all" project, which will replace the corresponding virtual projects
with the explicit ones.

When building such a project hierarchy extension, the project manager will
ensure that both modified sources and sources in implicit extending projects
that depend on them, are recompiled.

Thus, in our example we could create the following projects instead:
a_ext.gpr, extends a.gpr and overrides A1

c_ext.gpr, "extends all" c.gpr, imports a_ext.gpr and overrides C1

project A_Ext extends "a.gpr" is

for Source_Files use ("a1.adb", "a1.ads");

34

Chapter 1: GNAT Project Manager

end A_Ext;

with "a_ext.gpr";

project C_Ext extends all "c.gpr" is

for Source_Files use ("c1.adb");

end C_Ext;

When building project ‘c_ext.gpr’, the entire modified project space is consid-
ered for recompilation, including the sources of ‘b.gpr’ that are impacted by the
changes in A1 and C1.

1.7 Aggregate Projects
Aggregate projects are an extension of the project paradigm, and are meant

to solve a few specific use cases that cannot be solved directly using standard
projects. This section will go over a few of these use cases to try to explain what
you can use aggregate projects for.

1.7.1 Building all main programs from a single project tree
Most often, an application is organized into modules and submodules, which
are very conveniently represented as a project tree or graph (the root project A
withs the projects for each modules (say B and C), which in turn with projects
for submodules.

Very often, modules will build their own executables (for testing purposes
for instance), or libraries (for easier reuse in various contexts).

However, if you build your project through gnatmake or gprbuild, using a
syntax similar to

gprbuild -PA.gpr

this will only rebuild the main programs of project A, not those of the im-
ported projects B and C. Therefore you have to spawn several gnatmake com-
mands, one per project, to build all executables. This is a little inconvenient, but
more importantly is inefficient because gnatmake needs to do duplicate work to
ensure that sources are up-to-date, and cannot easily compile things in parallel
when using the -j switch.

Also libraries are always rebuilt when building a project.
You could therefore define an aggregate project Agg that groups A, B and C.

Then, when you build with
gprbuild -PAgg.gpr

this will build all mains from A, B and C.
aggregate project Agg is

for Project_Files use ("a.gpr", "b.gpr", "c.gpr");

end Agg;

35

GPRbuild User’s Guide

If B or C do not define any main program (through their Main attribute), all
their sources are built. When you do not group them in the aggregate project,
only those sources that are needed by A will be built.

If you add a main to a project P not already explicitly referenced in the
aggregate project, you will need to add "p.gpr" in the list of project files for the
aggregate project, or the main will not be built when building the aggregate
project.

1.7.2 Building a set of projects with a single command
One other case is when you have multiple applications and libraries that are
built independently from each other (but can be built in parallel). For instance,
you have a project tree rooted at A, and another one (which might share some
subprojects) rooted at B.

Using only gprbuild, you could do
gprbuild -PA.gpr

gprbuild -PB.gpr

to build both. But again, gprbuild has to do some duplicate work for those
files that are shared between the two, and cannot truly build things in parallel
efficiently.

If the two projects are really independent, share no sources other than
through a common subproject, and have no source files with a common base-
name, you could create a project C that imports A and B. But these restrictions
are often too strong, and one has to build them independently. An aggregate
project does not have these limitations and can aggregate two project trees that
have common sources.

This scenario is particularly useful in environments like VxWorks 653 where
the applications running in the multiple partitions can be built in parallel
through a single gprbuild command. This also works nicely with Annex E.

1.7.3 Define a build environment
The environment variables at the time you launch gprbuild or gprbuild will
influence the view these tools have of the project (PATH to find the compiler,
ADA PROJECT PATH or GPR PROJECT PATH to find the projects, environ-
ment variables that are referenced in project files through the "external" state-
ment,...). Several command line switches can be used to override those (-X or
-aP), but on some systems and with some projects, this might make the com-
mand line too long, and on all systems often make it hard to read.

An aggregate project can be used to set the environment for all projects
built through that aggregate. One of the nice aspects is that you can put the
aggregate project under configuration management, and make sure all your
user have a consistent environment when building. The syntax looks like

36

Chapter 1: GNAT Project Manager

aggregate project Agg is

for Project_Files use ("A.gpr", "B.gpr");

for Project_Path use ("../dir1", "../dir1/dir2");

for External ("BUILD") use "PRODUCTION";

package Builder is

for Switches ("Ada") use ("-q");

end Builder;

end Agg;

One of the often requested features in projects is to be able to reference
external variables in with statements, as in

with external("SETUP") & "path/prj.gpr"; -- ILLEGAL

project MyProject is

...

end MyProject;

For various reasons, this isn’t authorized. But using aggregate projects
provide an elegant solution. For instance, you could use a project file like:

aggregate project Agg is

for Project_Path use (external("SETUP") % "path");

for Project_Files use ("myproject.gpr");

end Agg;

with "prj.gpr"; -- searched on Agg’Project_Path

project MyProject is

...

end MyProject;

1.7.4 Performance improvements in builder
The loading of aggregate projects is optimized in gprbuild and gnatmake, so
that all files are searched for only once on the disk (thus reducing the number of
system calls and contributing to faster compilation times especially on systems
with sources on remote servers). As part of the loading, gprbuild and gnatmake
compute how and where a source file should be compiled, and even if it is found
several times in the aggregated projects it will be compiled only once.

Since there is no ambiguity as to which switches should be used, files can
be compiled in parallel (through the usual -j switch) and this can be done while
maximizing the use of CPUs (compared to launching multiple gprbuild and
gnatmake commands in parallel).

1.7.5 Syntax of aggregate projects
An aggregate project follows the general syntax of project files. The recom-
mended extension is still ‘.gpr’. However, a special aggregate qualifier must
be put before the keyword project.

37

GPRbuild User’s Guide

An aggregate project cannot with any other project (standard or aggregate),
except an abstract project which can be used to share attribute values. Build-
ing other aggregate projects from an aggregate project is done through the
Project Files attribute (see below).

An aggregate project does not have any source files directly (only through
other standard projects). Therefore a number of the standard attributes and
packages are forbidden in an aggregate project. Here is the (non exhaustive)
list:
• Languages
• Source Files, Source List File and other attributes dealing with list of

sources.
• Source Dirs, Exec Dir and Object Dir
• Library Dir, Library Name and other library-related attributes
• Main
• Roots
• Externally Built
• Inherit Source Path
• Excluded Source Dirs
• Locally Removed Files
• Excluded Source Files
• Excluded Source List File
• Interfaces
The only package that is authorized (albeit optional) is Builder. Other pack-

ages (in particular Compiler, Binder and Linker) are forbidden. It is an error
to have any of these (and such an error prevents the proper loading of the
aggregate project).

Three new attributes have been created, which can only be used in the
context of aggregate projects:

Project Files:
This attribute is compulsory (or else we are not aggregating any
project, and thus not doing anything). It specifies a list of ‘.gpr’
files that are grouped in the aggregate. The list may be empty.
The project files can be either other aggregate projects, or standard
projects. When grouping standard projects, you can have both the
root of a project tree (and you do not need to specify all its imported
projects), and any project within the tree.
Basically, the idea is to specify all those projects that have main
programs you want to build and link, or libraries you want to build.

38

Chapter 1: GNAT Project Manager

You can even specify projects that do not use the Main attribute nor
the Library_* attributes, and the result will be to build all their
source files (not just the ones needed by other projects).

The file can include paths (absolute or relative). Paths are relative
to the location of the aggregate project file itself (if you use a base
name, we expect to find the .gpr file in the same directory as the
aggregate project file). The extension ‘.gpr’ is mandatory, since this
attribute contains file names, not project names.

Paths can also include the "*" and "**" globbing patterns. The
latter indicates that any subdirectory (recursively) will be searched
for matching files. The latter ("**") can only occur at the last po-
sition in the directory part (ie "a/**/*.gpr" is supported, but not
"**/a/*.gpr"). Starting the pattern with "**" is equivalent to
starting with "./**".

For now, the pattern "*" is only allowed in the filename part, not in
the directory part. This is mostly for efficiency reasons to limit the
number of system calls that are needed.

Here are a few valid examples:
for Project_Files use ("a.gpr", "subdir/b.gpr");

-- two specific projects relative to the directory of agg.gpr

for Project_Files use ("**/*.gpr");

-- all projects recursively

Project Path:
This attribute can be used to specify a list of directories in which to
look for project files in with statements.

When you specify a project in Project Files say "x/y/a.gpr"), and
this projects imports a project "b.gpr", only b.gpr is searched in
the project path. a.gpr must be exactly at <dir of the aggre-
gate>/x/y/a.gpr.

This attribute, however, does not affect the search for the aggregated
project files specified with Project_Files.

Each aggregate project has its own (that is if agg1.gpr includes
agg2.gpr, they can potentially both have a different project path).
This project path is defined as the concatenation, in that order, of the
current directory, followed by the command line -aP switches, then
the directories from the Project Path attribute, then the directories
from the GPR PROJECT PATH and ADA PROJECT PATH env.
variables, and finally the predefined directories.

39

GPRbuild User’s Guide

In the example above, agg2.gpr’s project path is not influenced
by the attribute agg1’Project Path, nor is agg1 influenced by
agg2’Project Path.
This can potentially lead to errors. In the following example:

+---------------+ +----------------+

| Agg1.gpr |-=--includes--=-->| Agg2.gpr |

| ’project_path| | ’project_path |

| | | |

+---------------+ +----------------+

: :

includes includes

: :

v v

+-------+ +---------+

| P.gpr |<---------- withs --------| Q.gpr |

+-------+---------\ +---------+

| |

withs |

| |

v v

+-------+ +---------+

| R.gpr | | R’.gpr |

+-------+ +---------+

When looking for p.gpr, both aggregates find the same physical file
on the disk. However, it might happen that with their different
project paths, both aggregate projects would in fact find a differ-
ent r.gpr. Since we have a common project (p.gpr) "with"ing two
different r.gpr, this will be reported as an error by the builder.
Directories are relative to the location of the aggregate project file.
Here are a few valid examples:

for Project_Path use ("/usr/local/gpr", "gpr/");

External:
This attribute can be used to set the value of environment variables
as retrieved through the external statement in projects. It does
not affect the environment variables themselves (so for instance
you cannot use it to change the value of your PATH as seen from the
spawned compiler).
This attribute affects the external values as seen in the rest of the
aggreate projects, and in the aggregated projects.
The exact value of external a variable comes from one of three
sources (each level overrides the previous levels):
• An External attribute in aggregate project, for instance for

External ("BUILD_MODE") use "DEBUG";

40

Chapter 1: GNAT Project Manager

• Environment variables
These override the value given by the attribute, so that users
can override the value set in the (presumably shared with others
in his team) aggregate project.

• The -X command line switch to gprbuild and gnatmake
This always takes precedence.

This attribute is only taken into account in the main aggregate
project (i.e. the one specified on the command line to gprbuild or
natmake), and ignored in other aggregate projects. It is invalid
in standard projects. The goal is to have a consistent value in all
projects that are built through the aggregate, which would not be
the case in the diamond case: A groups the aggregate projects B
and C, which both (either directly or indirectly) build the project P.
If B and C could set different values for the environment variables,
we would have two different views of P, which in particular might
impact the list of source files in P.

1.7.6 package Builder in aggregate projects
As we mentioned before, only the package Builder can be specified in an aggre-
gate project. In this package, only the following attributes are valid:
Switches:

This attribute gives the list of switches to use for the builder
(gprbuild or gnatmake), depending on the language of the main
file. For instance,

for Switches ("Ada") use ("-d", "-p");

for Switches ("C") use ("-p");

These switches are only read from the main aggregate project (the
one passed on the command line), and ignored in all other aggregate
projects or projects.
It can only contain builder switches, not compiler switches.

Global Compilation Switches
This attribute gives the list of compiler switches for the various
languages. For instance,

for Global_Compilation_Switches ("Ada") use ("-O1", "-g");

for Global_Compilation_Switches ("C") use ("-O2");

This attribute is only taken into account in the aggregate project
specified on the command line, not in other aggregate projects.
In the projects grouped by that aggregate, the attribute
Builder.Global Compilation Switches is also ignored. However, the
attribute Compiler.Default Switches will be taken into account

41

GPRbuild User’s Guide

(but that of the aggregate have higher priority). The attribute
Compiler.Switches is also taken into account and can be used to
override the switches for a specific file. As a result, it always has
priority.
The rules are meant to avoid ambiguities when compiling. For in-
stance, aggregate project Agg groups the projects A and B, that both
depend on C. Here is an extra for all of these projects:

aggregate project Agg is

for Project_Files use ("a.gpr", "b.gpr");

package Builder is

for Global_Compilation_Switches ("Ada") use ("-O2");

end Builder;

end Agg;

with "c.gpr";

project A is

package Builder is

for Global_Compilation_Switches ("Ada") use ("-O1");

-- ignored

end Builder;

package Compiler is

for Default_Switches ("Ada") use ("-O1", "-g");

for Switches ("a_file1.adb") use ("-O0");

end Compiler;

end A;

with "c.gpr";

project B is

package Compiler is

for Default_Switches ("Ada") use ("-O0");

end Compiler;

end B;

project C is

package Compiler is

for Default_Switches ("Ada") use ("-O3", "-gnatn");

for Switches ("c_file1.adb") use ("-O0", "-g");

end Compiler;

end C;

then the following switches are used:
• all files from project A except a file1.adb are compiled with "-O2

-g", since the aggregate project has priority.
• the file a file1.adb is compiled with "-O0", since the Com-

piler.Switches has priority
• all files from project B are compiled with "-O2", since the ag-

42

Chapter 1: GNAT Project Manager

gregate project has priority
• all files from C are compiled with "-O2 -gnatn", except for

c file1.adb which is compiled with "-O0 -g"

Even though C is seen through two paths (through A and through
B), the switches used by the compiler are unambiguous.

Global Configuration Pragmas
This attribute can be used to specify a file containing configuration
pragmas, to be passed to the compiler. Since we ignore the package
Builder in other aggregate projects and projects, only those pragmas
defined in the main aggregate project will be taken into account.
Projects can locally add to those by using the Compiler.Local_
Configuration_Pragmas attribute if they need.

For projects that are built through the aggregate, the package Builder is
ignored, except for the Executable attribute which specifies the name of the
executables resulting from the link of the main programs, and for the Exe-
cutable Suffix.

1.8 Aggregate Library Projects
Aggregate library projects make it possible to build a single library using ob-

ject files built using other standard or library projects. This gives the flexibility
to describe an application as having multiple modules (a GUI, database access,
...) using different project files (so possibly built with different compiler options)
and yet create a single library (static or relocatable) out of the corresponding
object files.

1.8.1 Building aggregate library projects
For example, we can define an aggregate project Agg that groups A, B and C:

aggregate library project Agg is

for Project_Files use ("a.gpr", "b.gpr", "c.gpr");

for Library_Name use ("agg");

for Library_Dir use ("lagg");

end Agg;

Then, when you build with:
gprbuild agg.gpr

This will build all units from projects A, B and C and will create a static
library named ‘libagg.a’ into the ‘lagg’ directory. An aggregate library project
has the same set of restriction as a standard library project.

Note that a shared aggregate library project cannot aggregates a static li-
brary project. In platforms where a compiler option is required to create relo-

43

GPRbuild User’s Guide

catable object files, a Builder package in the aggregate library project may be
used:

aggregate library project Agg is

for Project_Files use ("a.gpr", "b.gpr", "c.gpr");

for Library_Name use ("agg");

for Library_Dir use ("lagg");

for Library_Kind use "relocatable";

package Builder is

for Global_Compilation_Switches ("Ada") use ("-fPIC");

end Builder;

end Agg;

With the above aggregate library Builder package, the -fPIC option will be
passed to the compiler when building any source code from projects ‘a.gpr’,
‘b.gpr’ and ‘c.gpr’.

1.8.2 Syntax of aggregate library projects
An aggregate library project follows the general syntax of project files. The
recommended extension is still ‘.gpr’. However, a special aggregate library
qualifier must be put before the keyword project.

An aggregate library project cannot with any other project (standard or
aggregate), except an abstract project which can be used to share attribute
values.

An aggregate library project does not have any source files directly (only
through other standard projects). Therefore a number of the standard attributes
and packages are forbidden in an aggregate library project. Here is the (non
exhaustive) list:
• Languages
• Source Files, Source List File and other attributes dealing with list of

sources.
• Source Dirs, Exec Dir and Object Dir
• Main
• Roots
• Externally Built
• Inherit Source Path
• Excluded Source Dirs
• Locally Removed Files
• Excluded Source Files
• Excluded Source List File
• Interfaces

44

Chapter 1: GNAT Project Manager

The only package that is authorized (albeit optional) is Builder.
The Project Files attribute (See see Section 1.7 [Aggregate Projects], page 35)

is used to described the aggregated projects whose object files have to be included
into the aggregate library.

1.9 Project File Reference
This section describes the syntactic structure of project files, the various con-
structs that can be used. Finally, it ends with a summary of all available
attributes.

1.9.1 Project Declaration
Project files have an Ada-like syntax. The minimal project file is:

project Empty is

end Empty;

The identifier Empty is the name of the project. This project name must be
present after the reserved word end at the end of the project file, followed by a
semi-colon.

Identifiers (i.e. the user-defined names such as project or variable names)
have the same syntax as Ada identifiers: they must start with a letter, and
be followed by zero or more letters, digits or underscore characters; it is also
illegal to have two underscores next to each other. Identifiers are always case-
insensitive ("Name" is the same as "name").

simple_name ::= identifier

name ::= simple_name { . simple_name }

Strings are used for values of attributes or as indexes for these attributes.
They are in general case sensitive, except when noted otherwise (in particular,
strings representing file names will be case insensitive on some systems, so that
"file.adb" and "File.adb" both represent the same file).

Reserved words are the same as for standard Ada 95, and cannot be used
for identifiers. In particular, the following words are currently used in project
files, but others could be added later on. In bold are the extra reserved words in
project files: all, at, case, end, for, is, limited, null, others, package,
renames, type, use, when, with, extends, external, project.

Comments in project files have the same syntax as in Ada, two consecutive
hyphens through the end of the line.

A project may be an independent project, entirely defined by a single
project file. Any source file in an independent project depends only on the
predefined library and other source files in the same project. But a project may
also depend on other projects, either by importing them through with clauses,
or by extending at most one other project. Both types of dependency can be
used in the same project.

45

GPRbuild User’s Guide

A path name denotes a project file. It can be absolute or relative. An
absolute path name includes a sequence of directories, in the syntax of the host
operating system, that identifies uniquely the project file in the file system.
A relative path name identifies the project file, relative to the directory that
contains the current project, or relative to a directory listed in the environment
variables ADA PROJECT PATH and GPR PROJECT PATH. Path names are
case sensitive if file names in the host operating system are case sensitive. As a
special case, the directory separator can always be "/" even on Windows systems,
so that project files can be made portable across architectures. The syntax of
the environment variable ADA PROJECT PATH and GPR PROJECT PATH
is a list of directory names separated by colons on UNIX and semicolons on
Windows.

A given project name can appear only once in a context clause.
It is illegal for a project imported by a context clause to refer, directly or

indirectly, to the project in which this context clause appears (the dependency
graph cannot contain cycles), except when one of the with clause in the cycle is
a limited with.

with "other_project.gpr";

project My_Project extends "extended.gpr" is

end My_Project;

These dependencies form a directed graph, potentially cyclic when using lim-
ited with. The subprogram reflecting the extends relations is a tree.

A project’s immediate sources are the source files directly defined by that
project, either implicitly by residing in the project source directories, or ex-
plicitly through any of the source-related attributes. More generally, a project
sources are the immediate sources of the project together with the immedi-
ate sources (unless overridden) of any project on which it depends directly or
indirectly.

A project hierarchy can be created, where projects are children of other
projects. The name of such a child project must be Parent.Child, where Parent
is the name of the parent project. In particular, this makes all with clauses of
the parent project automatically visible in the child project.

project ::= context_clause project_declaration

context_clause ::= {with_clause}

with_clause ::= with path_name { , path_name } ;

path_name ::= string_literal

project_declaration ::= simple_project_declaration | project_extension

simple_project_declaration ::=

project <project >name is
{declarative_item}

end <project_>simple_name;

46

Chapter 1: GNAT Project Manager

1.9.2 Qualified Projects
Before the reserved project, there may be one or two qualifiers, that is iden-
tifiers or reserved words, to qualify the project. The current list of qualifiers
is:

abstract: qualifies a project with no sources. Such a
project must either have no declaration of attributes Source_Dirs,
Source_Files, Languages or Source_List_File, or one of Source_
Dirs, Source_Files, or Languages must be declared as empty. If
it extends another project, the project it extends must also be a
qualified abstract project.

standard: a standard project is a non library project with sources.
This is the default (implicit) qualifier.

aggregate: a project whose sources are aggregated from other
project files.

aggregate library: a library whose sources are aggregated
from other project or library project files.

library: a library project must declare both attributes
Library_Name and Library_Dir.

configuration: a configuration project cannot be in a project tree.
It describes compilers and other tools to gprbuild.

1.9.3 Declarations
Declarations introduce new entities that denote types, variables, attributes,
and packages. Some declarations can only appear immediately within a project
declaration. Others can appear within a project or within a package.

declarative_item ::= simple_declarative_item

| typed_string_declaration

| package_declaration

simple_declarative_item ::= variable_declaration

| typed_variable_declaration

| attribute_declaration

| case_construction

| empty_declaration

empty_declaration ::= null ;

An empty declaration is allowed anywhere a declaration is allowed. It has no
effect.

47

GPRbuild User’s Guide

1.9.4 Packages
A project file may contain packages, that group attributes (typically all the
attributes that are used by one of the GNAT tools).

A package with a given name may only appear once in a project file. The
following packages are currently supported in project files (See see Section 1.9.9
[Attributes], page 54 for the list of attributes that each can contain).

Binder This package specifies characteristics useful when invoking the
binder either directly via the gnat driver or when using a builder
such as gnatmake or gprbuild. See Section 1.2.3 [Main Subpro-
grams], page 8.

Builder This package specifies the compilation options used when building
an executable or a library for a project. Most of the options should
be set in one of Compiler, Binder or Linker packages, but there
are some general options that should be defined in this package.
See Section 1.2.3 [Main Subprograms], page 8, and see Section 1.2.6
[Executable File Names], page 12 in particular.

Check This package specifies the options used when calling the checking
tool gnatcheck via the gnat driver. Its attribute Default Switches
has the same semantics as for the package Builder. The first string
should always be -rules to specify that all the other options belong
to the -rules section of the parameters to gnatcheck.

Compiler This package specifies the compilation options used by the compiler
for each languages. See Section 1.2.4 [Tools Options in Project Files],
page 9.

Cross_Reference
This package specifies the options used when calling the library tool
gnatxref via the gnat driver. Its attributes Default Switches and
Switches have the same semantics as for the package Builder.

Eliminate
This package specifies the options used when calling the tool
gnatelim via the gnat driver. Its attributes Default Switches and
Switches have the same semantics as for the package Builder.

Finder This package specifies the options used when calling the search tool
gnatfind via the gnat driver. Its attributes Default Switches and
Switches have the same semantics as for the package Builder.

Gnatls This package the options to use when invoking gnatls via the gnat
driver.

48

Chapter 1: GNAT Project Manager

Gnatstub This package specifies the options used when calling the tool
gnatstub via the gnat driver. Its attributes Default Switches and
Switches have the same semantics as for the package Builder.

IDE This package specifies the options used when starting an integrated
development environment, for instance GPS or Gnatbench. See Sec-
tion 2.3 [The Development Environments], page 73.

Linker This package specifies the options used by the linker. See Sec-
tion 1.2.3 [Main Subprograms], page 8.

Makefile This package is used by the GPS plugin Makefile.py. See the docu-
mentation in that plugin (from GPS: /Tools/Plug-ins).

Metrics This package specifies the options used when calling the tool
gnatmetric via the gnat driver. Its attributes Default Switches
and Switches have the same semantics as for the package Builder.

Naming This package specifies the naming conventions that apply to the
source files in a project. In particular, these conventions are used
to automatically find all source files in the source directories, or
given a file name to find out its language for proper processing. See
Section 1.2.8 [Naming Schemes], page 13.

Pretty_Printer
This package specifies the options used when calling the formatting
tool gnatpp via the gnat driver. Its attributes Default Switches
and Switches have the same semantics as for the package Builder.

Stack This package specifies the options used when calling the tool
gnatstack via the gnat driver. Its attributes Default Switches
and Switches have the same semantics as for the package Builder.

Synchronize
This package specifies the options used when calling the tool
gnatsync via the gnat driver.

In its simplest form, a package may be empty:
project Simple is

package Builder is

end Builder;

end Simple;

A package may contain attribute declarations, variable declarations and
case constructions, as will be described below.

When there is ambiguity between a project name and a package name, the
name always designates the project. To avoid possible confusion, it is always a
good idea to avoid naming a project with one of the names allowed for packages
or any name that starts with gnat.

49

GPRbuild User’s Guide

A package can also be defined by a renaming declaration. The new pack-
age renames a package declared in a different project file, and has the same
attributes as the package it renames. The name of the renamed package must
be the same as the name of the renaming package. The project must contain a
package declaration with this name, and the project must appear in the context
clause of the current project, or be its parent project. It is not possible to add
or override attributes to the renaming project. If you need to do so, you should
use an extending declaration (see below).

Packages that are renamed in other project files often come from project files
that have no sources: they are just used as templates. Any modification in
the template will be reflected automatically in all the project files that rename
a package from the template. This is a very common way to share settings
between projects.

Finally, a package can also be defined by an extending declaration. This is
similar to a renaming declaration, except that it is possible to add or override
attributes.

package_declaration ::= package_spec | package_renaming | package_extension

package_spec ::=

package <package >simple_name is
{simple_declarative_item}

end package_identifier ;

package_renaming ::==

package <package >simple_name renames <project >simple_name.package_identifier ;

package_extension ::==

package <package >simple_name extends <project >simple_name.package_identifier is
{simple_declarative_item}

end package_identifier ;

1.9.5 Expressions
An expression is any value that can be assigned to an attribute or a variable.
It is either a literal value, or a construct requiring runtime computation by the
project manager. In a project file, the computed value of an expression is either
a string or a list of strings.

A string value is one of:
• A literal string, for instance "comm/my_proj.gpr"

• The name of a variable that evaluates to a string (see Section 1.9.8 [Vari-
ables], page 53)

• The name of an attribute that evaluates to a string (see Section 1.9.9 [At-
tributes], page 54)

• An external reference (see Section 1.9.6 [External Values], page 51)
• A concatenation of the above, as in "prefix_" & Var.

A list of strings is one of the following:

50

Chapter 1: GNAT Project Manager

• A parenthesized comma-separated list of zero or more string expressions,
for instance (File_Name, "gnat.adc", File_Name & ".orig") or ().

• The name of a variable that evaluates to a list of strings
• The name of an attribute that evaluates to a list of strings
• A concatenation of a list of strings and a string (as defined above), for

instance ("A", "B") & "C"

• A concatenation of two lists of strings

The following is the grammar for expressions
string_literal ::= "{string_element}" -- Same as Ada

string_expression ::= string_literal

| variable name

| external_value

| attribute_reference

| (string_expression { & string_expression })

string_list ::= (string_expression { , string_expression })

| string variable_name
| string attribute_reference

term ::= string_expression | string_list

expression ::= term { & term } -- Concatenation

Concatenation involves strings and list of strings. As soon as a list of strings is
involved, the result of the concatenation is a list of strings. The following Ada
declarations show the existing operators:

function "&" (X : String; Y : String) return String;

function "&" (X : String_List; Y : String) return String_List;

function "&" (X : String_List; Y : String_List) return String_List;

Here are some specific examples:
List := () & File_Name; -- One string in this list

List2 := List & (File_Name & ".orig"); -- Two strings

Big_List := List & Lists2; -- Three strings

Illegal := "gnat.adc" & List2; -- Illegal, must start with list

1.9.6 External Values
An external value is an expression whose value is obtained from the command
that invoked the processing of the current project file (typically a gnatmake or
gprbuild command).

There are two kinds of external values, one that returns a single string, and
one that returns a string list.

The syntax of a single string external value is:
external_value ::= external (string_literal [, string_literal])

The first string literal is the string to be used on the command line or in the
environment to specify the external value. The second string literal, if present,

51

GPRbuild User’s Guide

is the default to use if there is no specification for this external value either on
the command line or in the environment.

Typically, the external value will either exist in the environment variables or
be specified on the command line through the ‘-Xvbl=value’ switch. If both are
specified, then the command line value is used, so that a user can more easily
override the value.

The function external always returns a string. It is an error if the value
was not found in the environment and no default was specified in the call to
external.

An external reference may be part of a string expression or of a string list
expression, and can therefore appear in a variable declaration or an attribute
declaration.

Most of the time, this construct is used to initialize typed variables, which
are then used in case statements to control the value assigned to attributes in
various scenarios. Thus such variables are often called scenario variables.

The syntax for a string list external value is:
external_value ::= external as list (string_literal , string_literal)

The first string literal is the string to be used on the command line or in the
environment to specify the external value. The second string literal is the
separator between each component of the string list.

If the external value does not exist in the environment or on the command
line, the result is an empty list. This is also the case, if the separator is an
empty string or if the external value is only one separator.

Any separator at the beginning or at the end of the external value is dis-
carded. Then, if there is no separator in the external value, the result is a
string list with only one string. Otherwise, any string between the beginning
and the first separator, between two consecutive separators and between the
last separator and the end are components of the string list.

external as list ("SWITCHES", ",")

If the external value is "-O2,-g", the result is ("-O2", "-g").
If the external value is ",-O2,-g,", the result is also ("-O2", "-g").
if the external value is "-gnav", the result is ("-gnatv").
If the external value is ",,", the result is ("").
If the external value is ",", the result is (), the empty string list.

1.9.7 Typed String Declaration
A type declaration introduces a discrete set of string literals. If a string
variable is declared to have this type, its value is restricted to the given set of
literals. These are the only named types in project files. A string type may only
be declared at the project level, not inside a package.

52

Chapter 1: GNAT Project Manager

typed_string_declaration ::=

type <typed string >_simple_name is (string_literal {, string_literal});

The string literals in the list are case sensitive and must all be different. They
may include any graphic characters allowed in Ada, including spaces. Here is
an example of a string type declaration:

type OS is ("NT", "nt", "Unix", "GNU/Linux", "other OS");

Variables of a string type are called typed variables; all other variables are
called untyped variables. Typed variables are particularly useful in case
constructions, to support conditional attribute declarations. (see Section 1.9.10
[Case Statements], page 59).

A string type may be referenced by its name if it has been declared in the
same project file, or by an expanded name whose prefix is the name of the project
in which it is declared.

1.9.8 Variables
Variables store values (strings or list of strings) and can appear as part of an
expression. The declaration of a variable creates the variable and assigns the
value of the expression to it. The name of the variable is available immediately
after the assignment symbol, if you need to reuse its old value to compute the
new value. Before the completion of its first declaration, the value of a variable
defaults to the empty string ("").

A typed variable can be used as part of a case expression to compute the
value, but it can only be declared once in the project file, so that all case state-
ments see the same value for the variable. This provides more consistency and
makes the project easier to understand. The syntax for its declaration is iden-
tical to the Ada syntax for an object declaration. In effect, a typed variable acts
as a constant.

An untyped variable can be declared and overridden multiple times within
the same project. It is declared implicitly through an Ada assignment. The
first declaration establishes the kind of the variable (string or list of strings)
and successive declarations must respect the initial kind. Assignments are
executed in the order in which they appear, so the new value replaces the old
one and any subsequent reference to the variable uses the new value.

A variable may be declared at the project file level, or within a package.
typed_variable_declaration ::=

<typed variable >simple_name : <typed string >name := string_expression;

variable_declaration ::= <variable >simple_name := expression;

Here are some examples of variable declarations:

53

GPRbuild User’s Guide

This_OS : OS := external ("OS"); -- a typed variable declaration

That_OS := "GNU/Linux"; -- an untyped variable declaration

Name := "readme.txt";

Save_Name := Name & ".saved";

Empty_List := ();

List_With_One_Element := ("-gnaty");

List_With_Two_Elements := List_With_One_Element & "-gnatg";

Long_List := ("main.ada", "pack1_.ada", "pack1.ada", "pack2_.ada");

A variable reference may take several forms:
• The simple variable name, for a variable in the current package (if any) or

in the current project
• An expanded name, whose prefix is a context name.

A context may be one of the following:
• The name of an existing package in the current project
• The name of an imported project of the current project
• The name of an ancestor project (i.e., a project extended by the current

project, either directly or indirectly)
• An expanded name whose prefix is an imported/parent project name, and

whose selector is a package name in that project.

1.9.9 Attributes
A project (and its packages) may have attributes that define the project’s
properties. Some attributes have values that are strings; others have values
that are string lists.

attribute_declaration ::=

simple_attribute_declaration | indexed_attribute_declaration

simple_attribute_declaration ::= for attribute_designator use expression ;

indexed_attribute_declaration ::=

for <indexed attribute >simple_name (string_literal) use expression ;

attribute_designator ::=

<simple attribute >simple_name

| <indexed attribute >simple_name (string_literal)

There are two categories of attributes: simple attributes and indexed at-
tributes. Each simple attribute has a default value: the empty string (for
string attributes) and the empty list (for string list attributes). An attribute
declaration defines a new value for an attribute, and overrides the previous
value. The syntax of a simple attribute declaration is similar to that of an
attribute definition clause in Ada.

Some attributes are indexed. These attributes are mappings whose domain
is a set of strings. They are declared one association at a time, by specifying

54

Chapter 1: GNAT Project Manager

a point in the domain and the corresponding image of the attribute. Like
untyped variables and simple attributes, indexed attributes may be declared
several times. Each declaration supplies a new value for the attribute, and
replaces the previous setting.

Here are some examples of attribute declarations:
-- simple attributes

for Object_Dir use "objects";

for Source_Dirs use ("units", "test/drivers");

-- indexed attributes

for Body ("main") use "Main.ada";

for Switches ("main.ada") use ("-v", "-gnatv");

for Switches ("main.ada") use Builder’Switches ("main.ada") & "-g";

-- indexed attributes copy (from package Builder in project Default)

-- The package name must always be specified, even if it is the current

-- package.

for Default_Switches use Default.Builder’Default_Switches;

Attributes references may be appear anywhere in expressions, and are used to
retrieve the value previously assigned to the attribute. If an attribute has not
been set in a given package or project, its value defaults to the empty string or
the empty list.

attribute_reference ::= attribute_prefix ’ <simple attribute> simple_name [(string_literal)]

attribute_prefix ::= project
| <project >simple_name

| package_identifier

| <project >simple_name . package_identifier

Examples are:
project’Object_Dir

Naming’Dot_Replacement

Imported_Project’Source_Dirs

Imported_Project.Naming’Casing

Builder’Default_Switches ("Ada")

The prefix of an attribute may be:
• project for an attribute of the current project
• The name of an existing package of the current project
• The name of an imported project
• The name of a parent project that is extended by the current project
• An expanded name whose prefix is imported/parent project name, and

whose selector is a package name
Legal attribute names are listed below, including the package in which they
must be declared. These names are case-insensitive. The semantics for the
attributes is explained in great details in other sections.

55

GPRbuild User’s Guide

The column index indicates whether the attribute is an indexed attribute,
and when it is whether its index is case sensitive (sensitive) or not (insensitive),
or if case sensitivity depends is the same as file names sensitivity on the system
(file). The text is between brackets ([]) if the index is optional.

Attribute Name Value Package Index
General attributes see Section 1.2 [Building

With Projects], page 2
Name string - (Read-only, name of project)
Project Dir string - (Read-only, directory of

project)
Source Files list - -
Source Dirs list - -
Source List File string - -
Locally Removed Files list - -
Excluded Source Files list - -
Object Dir string - -
Exec Dir string - -
Excluded Source Dirs list - -
Excluded Source Files list - -
Excluded Source List Filelist - -
Inherit Source Path list - insensitive
Languages list - -
Main list - -
Main Language string - -
Externally Built string - -
Roots list - file
Library-related
attributes

see Section 1.5 [Library
Projects], page 23

Library Dir string - -
Library Name string - -
Library Kind string - -
Library Version string - -
Library Interface string - -
Library Auto Init string - -
Library Options list - -
Leading Library Options list - -
Library Src Dir string - -
Library ALI Dir string - -
Library GCC string - -
Library Symbol File string - -
Library Symbol Policy string - -

56

Chapter 1: GNAT Project Manager

Library Reference Symbol Filestring - -
Interfaces list - -
Naming see Section 1.2.8 [Naming

Schemes], page 13
Spec Suffix string Naming insensitive (language)
Body Suffix string Naming insensitive (language)
Separate Suffix string Naming -
Casing string Naming -
Dot Replacement string Naming -
Spec string Naming insensitive (Ada unit)
Body string Naming insensitive (Ada unit)
Specification Exceptions list Naming insensitive (language)
Implementation Exceptionslist Naming insensitive (language)
Building see Section 2.1.2

[Switches and Project
Files], page 64

Default Switches list Builder,
Compiler,
Binder,
Linker,
Cross Reference,
Finder,
Pretty Printer,
gnatstub,
Check,
Synchronize,
Eliminate,
Metrics, IDE

insensitive (language name)

Switches list Builder,
Compiler,
Binder,
Linker,
Cross Reference,
Finder,
gnatls,
Pretty Printer,
gnatstub,
Check,
Synchronize,
Eliminate,
Metrics,
Stack

[file] (file name)

57

GPRbuild User’s Guide

Local Configuration Pragmasstring Compiler -
Local Config File string insensitive -
Global Configuration Pragmaslist Builder -
Global Compilation Switcheslist Builder language
Executable string Builder [file]
Executable Suffix string Builder -
Global Config File string Builder insensitive (language)
IDE (used and cre-
ated by GPS)
Remote Host string IDE -
Program Host string IDE -
Communication Protocol string IDE -
Compiler Command string IDE insensitive (language)
Debugger Command string IDE -
Gnatlist string IDE -
Gnat string IDE -
VCS Kind string IDE -
VCS File Check string IDE -
VCS Log Check string IDE -
Documentation Dir string IDE -
Configuration files See gprbuild manual
Default Language string - -
Run Path Option list - -
Run Path Origin string - -
Separate Run Path Optionsstring - -
Toolchain Version string - insensitive
Toolchain Description string - insensitive
Object Generated string - insensitive
Objects Linked string - insensitive
Target string - -
Library Builder string - -
Library Support string - -
Archive Builder list - -
Archive Builder Append Optionlist - -
Archive Indexer list - -
Archive Suffix string - -
Library Partial Linker list - -
Shared Library Prefix string - -
Shared Library Suffix string - -
Symbolic Link Supportedstring - -
Library Major Minor Id Supportedstring - -
Library Auto Init Supportedstring - -
Shared Library Minimum Switcheslist - -

58

Chapter 1: GNAT Project Manager

Library Version Switcheslist - -
Library Install Name Optionstring - -
Runtime Library Dir string - insensitive
Runtime Source Dir string - insensitive
Driver string Compiler,Binder,Linkerinsensitive (language)
Required Switches list Compiler,Binder,Linkerinsensitive (language)
Leading Required Switcheslist Compiler insensitive (language)
Trailing Required Switcheslist Compiler insensitive (language)
Pic Options list Compiler insensitive (language)
Path Syntax string Compiler insensitive (language)
Object File Suffix string Compiler insensitive (language)
Object File Switches list Compiler insensitive (language)
Multi Unit Switches list Compiler insensitive (language)
Multi Unit Object Separatorstring Compiler insensitive (language)
Mapping File Switches list Compiler insensitive (language)
Mapping Spec Suffix string Compiler insensitive (language)
Mapping body Suffix string Compiler insensitive (language)
Config File Switches list Compiler insensitive (language)
Config Body File Name string Compiler insensitive (language)
Config Body File Name Indexstring Compiler insensitive (language)
Config Body File Name Patternstring Compiler insensitive (language)
Config Spec File Name string Compiler insensitive (language)
Config Spec File Name Indexstring Compiler insensitive (language)
Config Spec File Name Patternstring Compiler insensitive (language)
Config File Unique string Compiler insensitive (language)
Dependency Switches list Compiler insensitive (language)
Dependency Driver list Compiler insensitive (language)
Include Switches list Compiler insensitive (language)
Include Path string Compiler insensitive (language)
Include Path File string Compiler insensitive (language)
Prefix string Binder insensitive (language)
Objects Path string Binder insensitive (language)
Objects Path File string Binder insensitive (language)
Linker Options list Linker -
Leading Switches list Linker -
Map File Options string Linker -
Executable Switches list Linker -
Lib Dir Switch string Linker -
Lib Name Switch string Linker -
Max Command Line Lengthstring Linker -
Response File Format string Linker -
Response File Switches list Linker -

59

GPRbuild User’s Guide

1.9.10 Case Statements
A case statement is used in a project file to effect conditional behavior. Through
this statement, you can set the value of attributes and variables depending on
the value previously assigned to a typed variable.

All choices in a choice list must be distinct. Unlike Ada, the choice lists of
all alternatives do not need to include all values of the type. An others choice
must appear last in the list of alternatives.

The syntax of a case construction is based on the Ada case statement (al-
though the null statement for empty alternatives is optional).

The case expression must be a typed string variable, whose value is often
given by an external reference (see Section 1.9.6 [External Values], page 51).

Each alternative starts with the reserved word when, either a list of literal
strings separated by the "|" character or the reserved word others, and the
"=>" token. Each literal string must belong to the string type that is the type
of the case variable. After each =>, there are zero or more statements. The only
statements allowed in a case construction are other case statements, attribute
declarations and variable declarations. String type declarations and package
declarations are not allowed. Variable declarations are restricted to variables
that have already been declared before the case construction.

case_statement ::=

case <typed variable >name is {case_item} end case ;

case_item ::=

when discrete_choice_list =>

{case_statement

| attribute_declaration

| variable_declaration

| empty_declaration}

discrete_choice_list ::= string_literal {| string_literal} | others

Here is a typical example:

60

Chapter 1: GNAT Project Manager

project MyProj is

type OS_Type is ("GNU/Linux", "Unix", "NT", "VMS");

OS : OS_Type := external ("OS", "GNU/Linux");

package Compiler is

case OS is

when "GNU/Linux" | "Unix" =>

for Switches ("Ada") use ("-gnath");

when "NT" =>

for Switches ("Ada") use ("-gnatP");

when others =>

null;

end case;

end Compiler;

end MyProj;

61

GPRbuild User’s Guide

62

Chapter 2: Tools Supporting Project Files

2 Tools Supporting Project Files

2.1 gnatmake and Project Files
This section covers several topics related to gnatmake and project files: defining
switches for gnatmake and for the tools that it invokes; specifying configuration
pragmas; the use of the Main attribute; building and rebuilding library project
files.

2.1.1 Switches Related to Project Files
The following switches are used by GNAT tools that support project files:
‘-Pproject’

Indicates the name of a project file. This project file will be parsed
with the verbosity indicated by ‘-vPx’, if any, and using the external
references indicated by ‘-X’ switches, if any. There may zero, one or
more spaces between ‘-P’ and project.
There must be only one ‘-P’ switch on the command line.
Since the Project Manager parses the project file only after all the
switches on the command line are checked, the order of the switches
‘-P’, ‘-vPx’ or ‘-X’ is not significant.

‘-Xname=value’
Indicates that external variable name has the value value.
The Project Manager will use this value for occurrences of
external(name) when parsing the project file.
If name or value includes a space, then name=value should be put
between quotes.

-XOS=NT

-X"user=John Doe"

Several ‘-X’ switches can be used simultaneously. If several ‘-X’
switches specify the same name, only the last one is used.
An external variable specified with a ‘-X’ switch takes precedence
over the value of the same name in the environment.

‘-vPx’ Indicates the verbosity of the parsing of GNAT project files.
‘-vP0’ means Default; ‘-vP1’ means Medium; ‘-vP2’ means High.
The default is Default: no output for syntactically correct project
files. If several ‘-vPx’ switches are present, only the last one is used.

‘-aP<dir>’
Add directory <dir> at the beginning of the project search path, in
order, after the current working directory.

63

GPRbuild User’s Guide

‘-eL’ Follow all symbolic links when processing project files.

‘--subdirs=<subdir>’
This switch is recognized by gnatmake and gnatclean. It indicate
that the real directories (except the source directories) are the sub-
directories <subdir> of the directories specified in the project files.
This applies in particular to object directories, library directories
and exec directories. If the subdirectories do not exist, they are
created automatically.

2.1.2 Switches and Project Files
For each of the packages Builder, Compiler, Binder, and Linker, you can

specify a Default_Switches attribute, a Switches attribute, or both; as their
names imply, these switch-related attributes affect the switches that are used
for each of these GNAT components when gnatmake is invoked. As will be ex-
plained below, these component-specific switches precede the switches provided
on the gnatmake command line.

The Default_Switches attribute is an attribute indexed by language name
(case insensitive) whose value is a string list. For example:

package Compiler is

for Default_Switches ("Ada")

use ("-gnaty",

"-v");

end Compiler;

The Switches attribute is indexed on a file name (which may or may not be case
sensitive, depending on the operating system) whose value is a string list. For
example:

package Builder is

for Switches ("main1.adb")

use ("-O2");

for Switches ("main2.adb")

use ("-g");

end Builder;

For the Builder package, the file names must designate source files for main
subprograms. For the Binder and Linker packages, the file names must desig-
nate ‘ALI’ or source files for main subprograms. In each case just the file name
without an explicit extension is acceptable.

For each tool used in a program build (gnatmake, the compiler, the binder,
and the linker), the corresponding package contributes a set of switches for
each file on which the tool is invoked, based on the switch-related attributes
defined in the package. In particular, the switches that each of these packages
contributes for a given file f comprise:

64

Chapter 2: Tools Supporting Project Files

• the value of attribute Switches (f), if it is specified in the package for the
given file,

• otherwise, the value of Default_Switches ("Ada"), if it is specified in the
package.

If neither of these attributes is defined in the package, then the package does
not contribute any switches for the given file.

When gnatmake is invoked on a file, the switches comprise two sets, in the
following order: those contributed for the file by the Builder package; and the
switches passed on the command line.

When gnatmake invokes a tool (compiler, binder, linker) on a file, the switches
passed to the tool comprise three sets, in the following order:
1. the applicable switches contributed for the file by the Builder package in

the project file supplied on the command line;
2. those contributed for the file by the package (in the relevant project file –

see below) corresponding to the tool; and
3. the applicable switches passed on the command line.

The term applicable switches reflects the fact that gnatmake switches may
or may not be passed to individual tools, depending on the individual switch.

gnatmakemay invoke the compiler on source files from different projects. The
Project Manager will use the appropriate project file to determine the Compiler
package for each source file being compiled. Likewise for the Binder and Linker
packages.

As an example, consider the following package in a project file:
project Proj1 is

package Compiler is

for Default_Switches ("Ada")

use ("-g");

for Switches ("a.adb")

use ("-O1");

for Switches ("b.adb")

use ("-O2",

"-gnaty");

end Compiler;

end Proj1;

If gnatmake is invoked with this project file, and it needs to compile, say, the
files ‘a.adb’, ‘b.adb’, and ‘c.adb’, then ‘a.adb’ will be compiled with the switch
‘-O1’, ‘b.adb’ with switches ‘-O2’ and ‘-gnaty’, and ‘c.adb’ with ‘-g’.

The following example illustrates the ordering of the switches contributed
by different packages:

65

GPRbuild User’s Guide

project Proj2 is

package Builder is

for Switches ("main.adb")

use ("-g",

"-O1",

"-f");

end Builder;

package Compiler is

for Switches ("main.adb")

use ("-O2");

end Compiler;

end Proj2;

If you issue the command:
gnatmake -Pproj2 -O0 main

then the compiler will be invoked on ‘main.adb’ with the following sequence of
switches

-g -O1 -O2 -O0

with the last ‘-O’ switch having precedence over the earlier ones; several other
switches (such as ‘-c’) are added implicitly.

The switches ‘-g’ and ‘-O1’ are contributed by package Builder, ‘-O2’ is
contributed by the package Compiler and ‘-O0’ comes from the command line.

The ‘-g’ switch will also be passed in the invocation of Gnatlink.
A final example illustrates switch contributions from packages in different

project files:
project Proj3 is

for Source_Files use ("pack.ads", "pack.adb");

package Compiler is

for Default_Switches ("Ada")

use ("-gnata");

end Compiler;

end Proj3;

with "Proj3";

project Proj4 is

for Source_Files use ("foo_main.adb", "bar_main.adb");

package Builder is

for Switches ("foo_main.adb")

use ("-s",

"-g");

end Builder;

end Proj4;

66

Chapter 2: Tools Supporting Project Files

-- Ada source file:

with Pack;

procedure Foo_Main is

...

end Foo_Main;

If the command is
gnatmake -PProj4 foo_main.adb -cargs -gnato

then the switches passed to the compiler for ‘foo_main.adb’ are ‘-g’ (con-
tributed by the package Proj4.Builder) and ‘-gnato’ (passed on the command
line). When the imported package Pack is compiled, the switches used are ‘-g’
from Proj4.Builder, ‘-gnata’ (contributed from package Proj3.Compiler, and
‘-gnato’ from the command line.

When using gnatmake with project files, some switches or arguments may
be expressed as relative paths. As the working directory where compilation
occurs may change, these relative paths are converted to absolute paths. For
the switches found in a project file, the relative paths are relative to the project
file directory, for the switches on the command line, they are relative to the
directory where gnatmake is invoked. The switches for which this occurs are: -I,
-A, -L, -aO, -aL, -aI, as well as all arguments that are not switches (arguments to
switch -o, object files specified in package Linker or after -largs on the command
line). The exception to this rule is the switch –RTS= for which a relative path
argument is never converted.

2.1.3 Specifying Configuration Pragmas
When using gnatmake with project files, if there exists a file ‘gnat.adc’ that
contains configuration pragmas, this file will be ignored.

Configuration pragmas can be defined by means of the following attributes in
project files: Global_Configuration_Pragmas in package Builder and Local_
Configuration_Pragmas in package Compiler.

Both these attributes are single string attributes. Their values is the path
name of a file containing configuration pragmas. If a path name is relative,
then it is relative to the project directory of the project file where the attribute
is defined.

When compiling a source, the configuration pragmas used are, in order,
those listed in the file designated by attribute Global_Configuration_Pragmas
in package Builder of the main project file, if it is specified, and those listed
in the file designated by attribute Local_Configuration_Pragmas in package
Compiler of the project file of the source, if it exists.

2.1.4 Project Files and Main Subprograms
When using a project file, you can invoke gnatmake with one or several main
subprograms, by specifying their source files on the command line.

67

GPRbuild User’s Guide

gnatmake -Pprj main1.adb main2.adb main3.adb

Each of these needs to be a source file of the same project, except when the
switch -u is used.

When -u is not used, all the mains need to be sources of the same project, one
of the project in the tree rooted at the project specified on the command line.
The package Builder of this common project, the "main project" is the one that
is considered by gnatmake.

When -u is used, the specified source files may be in projects imported directly
or indirectly by the project specified on the command line. Note that if such a
source file is not part of the project specified on the command line, the switches
found in package Builder of the project specified on the command line, if any,
that are transmitted to the compiler will still be used, not those found in the
project file of the source file.

When using a project file, you can also invoke gnatmake without explicitly
specifying any main, and the effect depends on whether you have defined the
Main attribute. This attribute has a string list value, where each element in
the list is the name of a source file (the file extension is optional) that contains
a unit that can be a main subprogram.

If the Main attribute is defined in a project file as a non-empty string list
and the switch ‘-u’ is not used on the command line, then invoking gnatmake
with this project file but without any main on the command line is equivalent to
invoking gnatmake with all the file names in the Main attribute on the command
line.

Example:
project Prj is

for Main use ("main1.adb", "main2.adb", "main3.adb");

end Prj;

With this project file, "gnatmake -Pprj" is equivalent to "gnatmake -Pprj
main1.adb main2.adb main3.adb".

When the project attribute Main is not specified, or is specified as an empty
string list, or when the switch ‘-u’ is used on the command line, then invoking
gnatmakewith no main on the command line will result in all immediate sources
of the project file being checked, and potentially recompiled. Depending on the
presence of the switch ‘-u’, sources from other project files on which the imme-
diate sources of the main project file depend are also checked and potentially
recompiled. In other words, the ‘-u’ switch is applied to all of the immediate
sources of the main project file.

When no main is specified on the command line and attribute Main exists and
includes several mains, or when several mains are specified on the command
line, the default switches in package Builder will be used for all mains, even if
there are specific switches specified for one or several mains.

68

Chapter 2: Tools Supporting Project Files

But the switches from package Binder or Linker will be the specific switches
for each main, if they are specified.

2.1.5 Library Project Files
When gnatmake is invoked with a main project file that is a library project file,
it is not allowed to specify one or more mains on the command line.

When a library project file is specified, switches -b and -l have special mean-
ings.
• -b is only allowed for stand-alone libraries. It indicates to gnatmake that

gnatbind should be invoked for the library.
• -l may be used for all library projects. It indicates to gnatmake that the

binder generated file should be compiled (in the case of a stand-alone li-
brary) and that the library should be built.

2.2 The GNAT Driver and Project Files
A number of GNAT tools, other than gnatmake can benefit from project files:
(gnatbind, gnatcheck, gnatclean, gnatelim, gnatfind, gnatlink, gnatls,
gnatmetric, gnatpp, gnatstub, and gnatxref). However, none of these tools
can be invoked directly with a project file switch (‘-P’). They must be invoked
through the gnat driver.

The gnat driver is a wrapper that accepts a number of commands and calls
the corresponding tool. It was designed initially for VMS platforms (to convert
VMS qualifiers to Unix-style switches), but it is now available on all GNAT
platforms.

On non-VMS platforms, the gnat driver accepts the following commands
(case insensitive):
• BIND to invoke gnatbind

• CHOP to invoke gnatchop

• CLEAN to invoke gnatclean

• COMP or COMPILE to invoke the compiler
• ELIM to invoke gnatelim

• FIND to invoke gnatfind

• KR or KRUNCH to invoke gnatkr

• LINK to invoke gnatlink

• LS or LIST to invoke gnatls

• MAKE to invoke gnatmake

• NAME to invoke gnatname

• PREP or PREPROCESS to invoke gnatprep

69

GPRbuild User’s Guide

• PP or PRETTY to invoke gnatpp

• METRIC to invoke gnatmetric

• STUB to invoke gnatstub

• XREF to invoke gnatxref

(note that the compiler is invoked using the command gnatmake -f -u -c).
On non-VMS platforms, between gnat and the command, two special

switches may be used:
• -v to display the invocation of the tool.
• -dn to prevent the gnat driver from removing the temporary files it has

created. These temporary files are configuration files and temporary file
list files.

The command may be followed by switches and arguments for the invoked tool.
gnat bind -C main.ali

gnat ls -a main

gnat chop foo.txt

Switches may also be put in text files, one switch per line, and the text files may
be specified with their path name preceded by ’@’.

gnat bind @args.txt main.ali

In addition, for commands BIND, COMP or COMPILE, FIND, ELIM, LS or
LIST, LINK, METRIC, PP or PRETTY, STUB and XREF, the project file related
switches (‘-P’, ‘-X’ and ‘-vPx’) may be used in addition to the switches of the
invoking tool.

When GNAT PP or GNAT PRETTY is used with a project file, but with no
source specified on the command line, it invokes gnatpp with all the immediate
sources of the specified project file.

When GNAT METRIC is used with a project file, but with no source specified
on the command line, it invokes gnatmetric with all the immediate sources of
the specified project file and with ‘-d’ with the parameter pointing to the object
directory of the project.

In addition, when GNAT PP, GNAT PRETTY or GNAT METRIC is used
with a project file, no source is specified on the command line and switch -U is
specified on the command line, then the underlying tool (gnatpp or gnatmetric)
is invoked for all sources of all projects, not only for the immediate sources of
the main project. (-U stands for Universal or Union of the project files of the
project tree)

For each of the following commands, there is optionally a corresponding
package in the main project.
• package Binder for command BIND (invoking gnatbind)
• package Check for command CHECK (invoking gnatcheck)

70

Chapter 2: Tools Supporting Project Files

• package Compiler for command COMP or COMPILE (invoking the com-
piler)

• package Cross_Reference for command XREF (invoking gnatxref)
• package Eliminate for command ELIM (invoking gnatelim)
• package Finder for command FIND (invoking gnatfind)
• package Gnatls for command LS or LIST (invoking gnatls)
• package Gnatstub for command STUB (invoking gnatstub)
• package Linker for command LINK (invoking gnatlink)
• package Check for command CHECK (invoking gnatcheck)
• package Metrics for command METRIC (invoking gnatmetric)
• package Pretty_Printer for command PP or PRETTY (invoking gnatpp)

Package Gnatls has a unique attribute Switches, a simple variable with a
string list value. It contains switches for the invocation of gnatls.

project Proj1 is

package gnatls is

for Switches

use ("-a",

"-v");

end gnatls;

end Proj1;

All other packages have two attribute Switches and Default_Switches.
Switches is an indexed attribute, indexed by the source file name, that has

a string list value: the switches to be used when the tool corresponding to the
package is invoked for the specific source file.

Default_Switches is an attribute, indexed by the programming language
that has a string list value. Default_Switches ("Ada") contains the switches
for the invocation of the tool corresponding to the package, except if a specific
Switches attribute is specified for the source file.

project Proj is

for Source_Dirs use ("**");

package gnatls is

for Switches use

("-a",

"-v");

end gnatls;

package Compiler is

for Default_Switches ("Ada")

use ("-gnatv",

"-gnatwa");

end Binder;

71

GPRbuild User’s Guide

package Binder is

for Default_Switches ("Ada")

use ("-C",

"-e");

end Binder;

package Linker is

for Default_Switches ("Ada")

use ("-C");

for Switches ("main.adb")

use ("-C",

"-v",

"-v");

end Linker;

package Finder is

for Default_Switches ("Ada")

use ("-a",

"-f");

end Finder;

package Cross_Reference is

for Default_Switches ("Ada")

use ("-a",

"-f",

"-d",

"-u");

end Cross_Reference;

end Proj;

With the above project file, commands such as
gnat comp -Pproj main

gnat ls -Pproj main

gnat xref -Pproj main

gnat bind -Pproj main.ali

gnat link -Pproj main.ali

will set up the environment properly and invoke the tool with the switches
found in the package corresponding to the tool: Default_Switches ("Ada")
for all tools, except Switches ("main.adb") for gnatlink. It is also possible
to invoke some of the tools, (gnatcheck, gnatmetric, and gnatpp) on a set of
project units thanks to the combination of the switches ‘-P’, ‘-U’ and possibly
the main unit when one is interested in its closure. For instance,

gnat metric -Pproj

will compute the metrics for all the immediate units of project proj.
gnat metric -Pproj -U

will compute the metrics for all the units of the closure of projects rooted at
proj.

72

Chapter 2: Tools Supporting Project Files

gnat metric -Pproj -U main_unit

will compute the metrics for the closure of units rooted at main_unit. This last
possibility relies implicitly on gnatbind’s option ‘-R’. But if the argument files
for the tool invoked by the gnat driver are explicitly specified either directly or
through the tool ‘-files’ option, then the tool is called only for these explicitly
specified files.

2.3 The Development Environments
See the appropriate manuals for more details. These environments will store
a number of settings in the project itself, when they are meant to be shared by
the whole team working on the project. Here are the attributes defined in the
package IDE in projects.
Remote_Host

This is a simple attribute. Its value is a string that designates
the remote host in a cross-compilation environment, to be used for
remote compilation and debugging. This field should not be specified
when running on the local machine.

Program_Host
This is a simple attribute. Its value is a string that specifies the
name of IP address of the embedded target in a cross-compilation
environment, on which the program should execute.

Communication_Protocol
This is a simple string attribute. Its value is the name of the pro-
tocol to use to communicate with the target in a cross-compilation
environment, e.g. "wtx" or "vxworks".

Compiler_Command
This is an associative array attribute, whose domain is a language
name. Its value is string that denotes the command to be used
to invoke the compiler. The value of Compiler_Command ("Ada")
is expected to be compatible with gnatmake, in particular in the
handling of switches.

Debugger_Command
This is simple attribute, Its value is a string that specifies the name
of the debugger to be used, such as gdb, powerpc-wrs-vxworks-gdb
or gdb-4.

Default_Switches
This is an associative array attribute. Its indexes are the name of
the external tools that the GNAT Programming System (GPS) is
supporting. Its value is a list of switches to use when invoking that
tool.

73

GPRbuild User’s Guide

Gnatlist This is a simple attribute. Its value is a string that specifies
the name of the gnatls utility to be used to retrieve information
about the predefined path; e.g., "gnatls", "powerpc-wrs-vxworks-
gnatls".

VCS_Kind This is a simple attribute. Its value is a string used to specify the
Version Control System (VCS) to be used for this project, e.g. CVS,
RCS ClearCase or Perforce.

Gnat This is a simple attribute. Its value is a string that specifies the
name of the gnat utility to be used when executing various tools
from GPS, in particular "gnat pp", "gnat stub",. . .

VCS_File_Check
This is a simple attribute. Its value is a string that specifies the
command used by the VCS to check the validity of a file, either
when the user explicitly asks for a check, or as a sanity check before
doing the check-in.

VCS_Log_Check
This is a simple attribute. Its value is a string that specifies the
command used by the VCS to check the validity of a log file.

VCS_Repository_Root
The VCS repository root path. This is used to create tags or branches
of the repository. For subversion the value should be the URL as
specified to check-out the working copy of the repository.

VCS_Patch_Root
The local root directory to use for building patch file. All patch
chunks will be relative to this path. The root project directory is
used if this value is not defined.

74

Chapter 3: Gprbuild

3 Gprbuild

GPRbuild is a generic build tool designed for the construction of large multi-
language systems organized into subsystems and libraries. It is well-suited for
compiled languages supporting separate compilation, such as Ada, C, C++ and
Fortran.

GPRbuild manages a three step build process.
• compilation phase:

Each compilation unit of each subsystem is examined in turn, checked for
consistency, and compiled or recompiled when necessary by the appropriate
compiler. The recompilation decision is based on dependency information
that is typically produced by a previous compilation.

• post-compilation phase (or binding):
Compiled units from a given language are passed to a language-specific
post-compilation tool if any. Also during this phase objects are grouped into
static or dynamic libraries as specified.

• linking phase:
All units or libraries from all subsystems are passed to a linker tool specific
to the set of toolchains being used.

The tool is generic in that it provides, when possible, equivalent build ca-
pabilities for all supported languages. For this, it uses a configuration file
‘<file>.cgpr’ that has a syntax and structure very similar to a project file, but
which defines the characteristics of the supported languages and toolchains.
The configuration file contains information such as:
• the default source naming conventions for each language,
• the compiler name, location and required options,
• how to compute inter-unit dependencies,
• how to build static or dynamic libraries,
• which post-compilation actions are needed,
• how to link together units from different languages.

On the other hand, GPRbuild is not a replacement for general-purpose build
tools such as make or ant which give the user a high level of control over the
build process itself. When building a system requires complex actions that
do not fit well in the three-phase process described above, GPRbuild might
not be sufficient. In such situations, GPRbuild can still be used to manage
the appropriate part of the build. For instance it can be called from within a
Makefile.

75

GPRbuild User’s Guide

3.1 Building with GPRbuild

3.1.1 Command Line
Three elements can optionally be specified on GPRbuild’s command line:
• the main project file,
• the switches for GPRbuild itself or for the tools it drives, and
• the main source files.

The general syntax is thus:
gprbuild [<proj>.gpr] [switches] [names]

{[-cargs opts] [-cargs:lang opts] [-largs opts] [-gargs opts]}

GPRbuild requires a project file, which may be specified on the command line
either directly or through the ‘-P’ switch. If not specified, GPRbuild uses the
project file ‘default.gpr’ if there is one in the current working directory. Other-
wise, if there is only one project file in the current working directory, GPRbuild
uses this project file.

Main source files represent the sources to be used as the main programs.
If they are not specified on the command line, GPRbuild uses the source files
specified with the Main attribute in the project file. If none exists, then no
executable will be built. It is also possible to specify absolute file names, or file
names relative to the current directory. Finally, it is possible to specify Ada unit
names (and gprbuild automatically looks up the corresponding file name in the
project).

When source files are specified along with the option ‘-c’, then recompilation
will be considered only for those source files. In all other cases, GPRbuild
compiles or recompiles all sources in the project tree that are not up to date,
and builds or rebuilds libraries that are not up to date.

If invoked without the ‘--config=’ or ‘--autoconf=’ options, then GPRbuild
will look for a configuration project file ‘default.cgpr’, or ‘<targetname>.cgpr’
if option ‘--target=<targetname>’ is used. If there is no such file in the default
locations expected by GPRbuild (<install>/share/gpr and the current directory)
then GPRbuild will invoke GPRconfig with the languages from the project files,
and create a configuration project file ‘auto.cgpr’ in the object directory of
the main project. The project ‘auto.cgpr’ will be rebuilt at each GPRbuild
invocation unless you use the switch ‘--autoconf=path/auto.cgpr’, which will
use the configuration project file if it exists and create it otherwise.

Options given on the GPRbuild command line may be passed along to in-
dividual tools by preceding them with one of the “command line separators”
shown below. Options following the separator, up to the next separator (or end
of the command line), are passed along. The different command line separators
are:

76

Chapter 3: Gprbuild

• ‘-cargs’
The arguments that follow up to the next command line separator are
options for all compilers for all languages. Example: ‘-cargs -g’

• ‘-cargs:<language name>’
The arguments that follow up to the next command line separator are
options for the compiler of the specific language.
Examples:

- ‘-cargs:Ada -gnatf’
- ‘-cargs:C -E’

• ‘-bargs’
The arguments that follow up to the next command line separator are
options for all binder drivers.

• ‘-bargs:<language name>’
The arguments that follow up to the next command line separators are
options for the binder driver of the specific language.
Examples:

- ‘-bargs:Ada binder_prefix=ppc-elf’
- ‘-bargs:C++ c_compiler_name=ccppc’

• ‘-largs’
The arguments that follow up to the next command line separator are
options for the linker, when linking an executable.

• ‘-gargs’
The arguments that follow up to the next command line separator are
options for GPRbuild itself. Usually ‘-gargs’ is specified after one or several
other command line separators.

• ‘-margs’
Equivalent to ‘-gargs’, provided for compatibility with gnatmake.

3.1.2 Switches
GPRbuild takes into account switches that may be specified on the command line
or in attributes Switches(<main or language>) or Default Switches (<language)
in package Builder of the main project.

When there are a single main (specified on the command line or in attribute
Main in the main project), the switches that are taken into account in package
Builder of the main project are Switches (<main>), if declared, or Switches
(<language of main>), if declared.

When there are several mains, if there are sources of the same language,
then Switches (<language of main>) is taken into account, if specified.

77

GPRbuild User’s Guide

When there are no main specified, if there is only one compiled language
(that is a language with a non empty Compiler Driver), then Switches (<single
language>) is taken into account, if specified.
The switches that are interpreted directly by GPRbuild are listed below.

First, the switches that may be specified only on the command line, but not
in package Builder of the main project:
• ‘--version’

Display information about GPRbuild: version, origin and legal status, then
exit successfully, ignoring other options.

• ‘--help’
Display GPRbuild usage, then exit successfully, ignoring other options.

• ‘--display-paths’
Display two lines: the configuration project file search path and the user
project file search path, then exit successfully, ignoring other options.

• ‘--config=<config project file name>’
This specifies the configuration project file name. By default, the config-
uration project file name is ‘default.cgpr’. Option ‘--config=’ cannot
be specified more than once. The configuration project file specified with
‘--config=’ must exist.

• ‘--autoconf=<config project file name>’
This specifies a configuration project file name that already exists or will be
created automatically. Option ‘--autoconf=’ cannot be specified more than
once. If the configuration project file specified with ‘--autoconf=’ exists,
then it is used. Otherwise, GPRconfig is invoked to create it automatically.

• ‘--target=<targetname>’
This specifies that the default configuration project file is
‘<targetname>.cgpr’. If no configuration project file with this name is
found, then GPRconfig is invoked with option ‘--target=<targetname>’to
create a configuration project file ‘auto.cgpr’.
Note: only one of ‘--config’, ‘--autoconf’ or ‘--target=’ can be specified.

• ‘--no-object-check’
Do not check if an object has been created after compilation.

• ‘--subdirs=<subdir>’
This indicates that the real directories (except the source directories) are
subdirectories of the directories specified in the project files. This applies
in particular to object directories, library directories and exec directories.
If the directories do not exist, they are created automatically.

78

Chapter 3: Gprbuild

• ‘--unchecked-shared-lib-imports’
Allow shared library projects to import projects that are not shared library
projects.

• ‘--source-info=<source info file>’
Specify a source info file. If the source info file is specified as a relative path,
then it is relative to the object directory of the main project. If the source
info file does not exist, then after the Project Manager has successfully
parsed and processed the project files and found the sources, it creates
the source info file. If the source info file already exists and can be read
successfully, then the Project Manager will get all the needed information
about the sources from the source info file and will not look for them. This
reduces the time to process the project files, especially when looking for
sources that take a long time. If the source info file exists but cannot be
parsed successfully, the Project Manager will attempt to recreate it. If the
Project Manager fails to create the source info file, a message is issued, but
GPRbuild does not fail.

• ‘--restricted-to-languages=<list of language names>’
Restrict the sources to be compiled to one or several languages. Each
language name in the list is separated from the next by a comma, without
any space.
Example: ‘--restricted-to-languages=Ada,C’
When this switch is used, switches ‘-c’, ‘-b’ and ‘-l’ are ignored. Only the
compilation phase is performed and the sources that are not in the list of
restricted languages are not compiled, including mains specified in package
Builder of the main project.

• ‘-aP dir’ (Add directory ‘dir’ to project search path)
Specify to GPRbuild to add directory ‘dir’ to the user project file search
path, before the default directory.

• ‘-b’ (Bind only)
Specify to GPRbuild that the post-compilation (or binding) phase is to be
performed, but not the other phases unless they are specified by appropriate
switches.

• ‘-c’ (Compile only)
Specify to GPRbuild that the compilation phase is to be performed, but not
the other phases unless they are specified by appropriate switches.

• ‘-d’ (Display progress)
Display progress for each source, up to date or not, as a single line completed
x out of y (zz%).... If the file needs to be compiled this is displayed after the
invocation of the compiler. These lines are displayed even in quiet output
mode (switch ‘-q’).

79

GPRbuild User’s Guide

• ‘-Inn’ (Index of main unit in multi-unit source file) Indicate the index of
the main unit in a multi-unit source file. The index must be a positive
number and there should be one and only one main source file name on the
command line.

• ‘-eL’ (Follow symbolic links when processing project files)
By default, symbolic links on project files are not taken into account when
processing project files. Switch ‘-eL’ changes this default behavior.

• ‘-eS’ (no effect)
This switch is only accepted for compatibility with gnatmake, but it has
no effect. For gnatmake, it means: echo commands to standard output
instead of standard error, but for gprbuild, commands are always echoed to
standard output.

• ‘-F’ (Full project path name in brief error messages)
By default, in non verbose mode, when an error occurs while processing a
project file, only the simple name of the project file is displayed in the error
message. When switch ‘-F’ is used, the full path of the project file is used.
This switch has no effect when switch ‘-v’ is used.

• ‘-l’ (Link only)
Specify to GPRbuild that the linking phase is to be performed, but not the
other phases unless they are specified by appropriate switches.

• ‘-m’ (Minimum Ada recompilation)
Do not recompile Ada code if timestamps are different but checksums are
the same.

• ‘-o name’ (Choose an alternate executable name)
Specify the file name of the executable. Switch ‘-o’ can be used only if there
is exactly one executable being built; that is, there is exactly one main on
the command line, or there are no mains on the command line and exactly
one main in attribute Main of the main project.

• ‘-P proj’ (use Project file proj)
Specify the path name of the main project file. The space between ‘-P’ and
the project file name is optional. Specifying a project file name (with suffix
‘.gpr’) may be used in place of option ‘-P’. Exactly one main project file can
be specified.

• ‘-r’ (Recursive)
This switch has an effect only when ‘-c’ or ‘-u’ is also specified and there
are no mains: it means that all sources of all projects need to be compiled
or recompiled.

80

Chapter 3: Gprbuild

• ‘-u’ (Unique compilation, only compile the given files)
If there are sources specified on the command line, only compile these
sources. If there are no sources specified on the command line, compile all
the sources of the main project.
In both cases, do not attempt the binding and the linking phases.

• ‘-U’ (Compile all sources of all projects)
If there are sources specified on the command line, only compile these
sources. If there are no sources specified on the command line, compile all
the sources of all the projects in the project tree.
In both cases, do not attempt the binding and the linking phases.

• ‘-vPx’ (Specify verbosity when parsing Project Files)
By default, GPRbuild does not display anything when processing project
files, except when there are errors. This default behavior is obtained with
switch ‘-vP0’. Switches ‘-vP1’ and ‘-vP2’ yield increasingly detailed output.

• ‘-Xnm=val’ (Specify an external reference for Project Files)
Specify an external reference that may be queried inside the project files
using built-in function external. For example, with ‘-XBUILD=DEBUG’,
external("BUILD") inside a project file will have the value "DEBUG".

Then, the switches that may be specified on the command line as well as in
package Builder of the main project (attribute Switches):
• ‘--create-map-file’

When linking an executable, if supported by the platform, create a map file
with the same name as the executable, but with suffix ‘.map’.

• ‘--create-map-file=<map file>’
When linking an executable, if supported by the platform, create a map file
with file name ‘<map file>’.

• ‘--no-indirect-imports’
This indicates that sources of a project should import only sources or header
files from directly imported projects, that is those projects mentioned in a
with clause and the projects they extend directly or indirectly. A check
is done in the compilation phase, after a successful compilation, that the
sources follow these restrictions. For Ada sources, the check is fully en-
forced. For non Ada sources, the check is partial, as in the dependency
file there is no distinction between header files directly included and those
indirectly included. The check will fail if there is no possibility that a
header file in a non directly imported project could have been indirectly im-
ported. If the check fails, the compilation artifacts (dependency file, object
file, switches file) are deleted.

81

GPRbuild User’s Guide

• ‘--indirect-imports’
This indicates that sources of a project can import sources or header
files from directly or indirectly imported projects. This is the de-
fault behavior. This switch is provided to cancel a previous switch
‘--no-indirect-imports’ on the command line.

• ‘--no-split-units’
Forbid the sources of the same Ada unit to be in different projects.

• ‘--single-compile-per-obj-dir’
Disallow several simultaneous compilations for the same object directory.

• ‘-f’ (Force recompilations)
Force the complete processing of all phases (or of those explicitly specified)
even when up to date.

• ‘-j<num>’ (use num simultaneous compilation jobs)
By default, GPRbuild invokes one compiler at a time. With switch ‘-j’, it is
possible to instruct GPRbuild to spawn several simultaneous compilation
jobs if needed. For example, ‘-j2’ for two simultaneous compilation jobs or
‘-j4’ for four. On a multi-processor system, ‘-j<num>’ can greatly speed up
the build process.

• ‘-k’ (Keep going after compilation errors)
By default, GPRbuild stops spawning new compilation jobs at the first
compilation failure. Using switch ‘-k’, it is possible to attempt to com-
pile/recompile all the sources that are not up to date, even when some
compilations failed. The post-compilation phase and the linking phase are
never attempted if there are compilation failures, even when switch ‘-k’ is
used.

• ‘-p’ or ‘--create-missing-dirs’ (Create missing object, library and exec
directories)
By default, GPRbuild checks that the object, library and exec directories
specified in project files exist. Switch ‘-p’ instructs GPRbuild to attempt
to create missing directories. Note that these switches may be specified in
package Builder of the main project, but they are useless there as either
the directories already exist or the processing of the project files has failed
before the evaluation of the Builder switches, because there is at least one
missing directory.

• ‘-q’ (Quiet output)
Do not display anything except errors and progress (switch ‘-d’). Cancel
any previous switch ‘-v’.

• ‘-R’ (no run path option)
Do not use a run path option to link executables or shared libraries, even
when attribute Run Path Option is specified.

82

Chapter 3: Gprbuild

• ‘-s’ (recompile if compilation switches have changed)
By default, GPRbuild will not recompile a source if all dependencies are sat-
isfied. Switch ‘-s’ instructs GPRbuild to recompile sources when a different
set of compilation switches has been used in the previous compilation, even
if all dependencies are satisfied. Each time GPRbuild invokes a compiler,
it writes a text file that lists the switches used in the invocation of the
compiler, so that it can retrieve these switches if ‘-s’ is used later.

• ‘-v’ (Verbose output)
Display full paths, all options used in spawned processes, and reasons why
these processes are spawned. Cancel any previous switch ‘-q’.

• ‘-vl’ (Verbose output, low level)
Verbose output. Some verbose messages are not displayed.

• ‘-vm’ (Verbose output, medium level)
Verbose output. Some verbose messages may not be displayed.

• ‘-vh’ (Verbose output, high level)
Equivalent to ‘-v’.

• ‘-we’ (Treat all warnings as errors)
When ‘-we’ is used, any warning during the processing of the project files
becomes an error and GPRbuild does not attempt any of the phases.

• ‘-wn’ (Treat warnings as warnings)
Switch ‘-wn’ may be used to restore the default after ‘-we’ or ‘-ws’.

• ‘-ws’ (Suppress all warnings)
Do not generate any warnings while processing the project files.

Switches that are accepted for compatibility with gnatmake, either on the com-
mand line or in the Builder Ada switches in the main project file:
• ‘-nostdinc’
• ‘-nostdlib’
• ‘-fstack-check’
• ‘-fno-inline’
• ‘-g*’ Any switch starting with ‘-g’
• ‘-O*’ Any switch starting with ‘-O’

These switches are passed to the Ada compiler.

3.1.3 Initialization
Before performing one or several of its three phases, GPRbuild has to read the
command line, obtain its configuration, and process the project files.

83

GPRbuild User’s Guide

If GPRbuild is invoked with an invalid switch or without any project file on
the command line, it will fail immediately.

Examples:
$ gprbuild -P

gprbuild: project file name missing after -P

$ gprbuild -P c_main.gpr -WW

gprbuild: illegal option "-WW"

GPRbuild looks for the configuration project file first in the current working
directory, then in the default configuration project directory. If the GPRbuild
executable is located in a subdirectory ‘<prefix>/bin’, then the default config-
uration project directory is ‘<prefix>/share/gpr’, otherwise there is no default
configuration project directory.

When it has found its configuration project path, GPRbuild needs to obtain
its configuration. By default, the file name of the main configuration project is
‘default.cgpr’. This default may be modified using the switch ‘--config=...’

Example:
$ gprbuild --config=my_standard.cgpr -P my_project.gpr

If GPRbuild cannot find the main configuration project on the configuration
project path, then it will look for all the languages specified in the user
project tree and invoke GPRconfig to create a configuration project file named
‘auto.cgpr’ that is located in the object directory of the main project file.

Once it has found the configuration project, GPRbuild will process its config-
uration: if a single string attribute is specified in the configuration project and
is not specified in a user project, then the attribute is added to the user project.
If a string list attribute is specified in the configuration project then its value is
prepended to the corresponding attribute in the user project.

After GPRbuild has processed its configuration, it will process the user
project file or files. If these user project files are incorrect then GPRbuild
will fail with the appropriate error messages:

$ gprbuild -P my_project.gpr

ada_main.gpr:3:26: "src" is not a valid directory

gprbuild: "my_project.gpr" processing failed

Once the user project files have been dealt with successfully, GPRbuild will start
its processing.

3.1.4 Compilation of one or several sources
If GPRbuild is invoked with ‘-u’ or ‘-U’ and there are one or several source file
names specified on the command line, GPRbuild will compile or recompile these
sources, if they are not up to date or if ‘-f’ is also specified. Then GPRbuild will
stop its execution.

84

Chapter 3: Gprbuild

The options/switches used to compile these sources are described in section
Section 3.1.5 [Compilation Phase], page 85.

If GPRbuild is invoked with ‘-u’ and no source file name is specified on the
command line, GPRbuild will compile or recompile all the sources of the main
project and then stop.

In contrast, if GPRbuild is invoked with ‘-U’, and again no source file name
is specified on the command line, GPRbuild will compile or recompile all the
sources of all the projects in the project tree and then stop.

3.1.5 Compilation Phase
When switch ‘-c’ is used or when switches ‘-b’ or ‘-l’ are not used, GPRbuild
will first compile or recompile the sources that are not up to date in all the
projects in the project tree. The sources considered are:
• all the sources in languages other than Ada
• if there are no main specified, all the Ada sources
• if there is a non Ada main, but no attribute Roots specified for this main,

all the Ada sources
• if there is a main with an attribute Roots specified, all the Ada sources in

the closures of these Roots.
• if there is an Ada main specified, all the Ada sources in the closure of the

main
Attribute Roots takes as an index a main and a string list value. Each string in
the list is the name of an Ada library unit.

Example:
for Roots ("main.c") use ("pkga", "pkgb");

Package PkgA and PkgB will be considered, and all the Ada units in their
closure will also be considered.

GPRbuild will first consider each source and decide if it needs to be
(re)compiled.

A source needs to be compiled in the following cases:
• Switch ‘-f’ (force recompilations) is used
• The object file does not exist
• The source is more recent than the object file
• The dependency file does not exist
• The source is more recent than the dependency file
• When ‘-s’ is used: the switch file does not exist
• When ‘-s’ is used: the source is more recent than the switch file
• The dependency file cannot be read

85

GPRbuild User’s Guide

• The dependency file is empty
• The dependency file has a wrong format
• A source listed in the dependency file does not exist
• A source listed in the dependency file has an incompatible time stamp
• A source listed in the dependency file has been replaced
• Switch ‘-s’ is used and the source has been compiled with different switches

or with the same switches in a different order
When a source is successfully compiled, the following files are normally created
in the object directory of the project of the source:
• An object file
• A dependency file, except when the dependency kind for the language is

none

• A switch file if switch ‘-s’ is used
The compiler for the language corresponding to the source file name is invoked
with the following switches/options:
• The required compilation switches for the language
• The compilation switches coming from package Compiler of the project of

the source
• The compilation switches specified on the command line for all compilers,

after ‘-cargs’
• The compilation switches for the language of the source, specified after

‘-cargs:<language>’
• Various other options including a switch to create the dependency file while

compiling, a switch to specify a configuration file, a switch to specify a
mapping file, and switches to indicate where to look for other source or
header files that are needed to compile the source.

If compilation is needed, then all the options/switches, except those described
as “Various other options” are written to the switch file. The switch file is a text
file. Its file name is obtained by replacing the suffix of the source with ‘.cswi’.
For example, the switch file for source ‘main.adb’ is ‘main.cswi’ and for ‘toto.c’
it is ‘toto.cswi’.

If the compilation is successful, then if the creation of the dependency file
is not done during compilation but after (see configuration attribute Compute_
Dependency), then the process to create the dependency file is invoked.

If GPRbuild is invoked with a switch ‘-j’ specifying more than one compila-
tion process, then several compilation processes for several sources of possibly
different languages are spawned concurrently.

For each project file, attribute Interfaces may be declared. Its value is a
list of sources or header files of the project file. For a project file extending

86

Chapter 3: Gprbuild

another one, directly or indirectly, inherited sources may be in the list. When
Interfaces is not declared, all sources or header files are part of the interface of
the project. When Interfaces is declared, only those sources or header files are
part of the interface of the project file. After a successful compilation, gprbuild
checks that all imported or included sources or header files that are from an
imported project are part of the interface of the imported project. If this check
fails, the compilation is invalidated and the compilation artifacts (dependency,
object and switches files) are deleted.

Example:
project Prj is

for Languages use ("Ada", "C");

for Interfaces use ("pkg.ads", "toto.h");

end Prj;

If a source from a project importing project Prj imports sources from Prj other
than package Pkg or includes header files from Prj other than "toto.h", then its
compilation will be invalidated.

3.1.6 Post-Compilation Phase
The post-compilation phase has two parts: library building and program bind-
ing.

If there are libraries that need to be built or rebuilt, gprbuild will call the
library builder, specified by attribute Library_Builder. This is generally the
tool gprlib, provided with GPRbuild. If gprbuild can determine that a library is
already up to date, then the library builder will not be called.

If there are mains specified, and for these mains there are sources of lan-
guages with a binder driver (specified by attribute Binder’Driver (<language>),
then the binder driver is called for each such main, but only if it needs to.

For Ada, the binder driver is normally gprbind, which will call the appropri-
ate version of gnatbind, that either the one in the same directory as the Ada
compiler or the fist one found on the path. When neither of those is appropriate,
it is possible to specify to gprbind the full path of gnatbind, using the Binder
switch --gnatbind_path=.

Example:
package Binder is

for Switches ("Ada") use ("--gnatbind_path=/toto/gnatbind");

end Binder;

If gprbuild can determine that the artifacts from a previous post-compilation
phase are already up to date, the binder driver is not called.

If there are no libraries and no binder drivers, then the post-compilation
phase is empty.

87

GPRbuild User’s Guide

3.1.7 Linking Phase
When there are mains specified, either in attribute Main or on the command
line, and these mains are not up to date, the linker is invoked for each main,
with all the specified or implied options, including the object files generated
during the post-compilation phase by the binder drivers.

3.1.8 Incompatibilities with gnatmake
Here is a list of incompatibilities between gnatmake invoked with a project file
and gprbuild:
• gprbuild never recompiles the runtime sources.
• gnatmake switches that are not recognized by gprbuild:

- -a (Consider all files, even readonly ali files)
- -M (List object file dependences for Makefile)
- -n (Check objects up to date, output next file to compile if not)
- -x (Allow compilation of needed units external to the projects)
- -z No main subprogram (zero main)
- –GCC=command
- –GNATBIND=command
- –GNATLINK=command
- -aLdir (Skip missing library sources if ali in dir)
- -Adir (like -aLdir -aIdir)
- -aOdir (Specify library/object files search path)
- -aIdir (Specify source files search path)
- -Idir (Like -aIdir -aOdir)
- -I- (Don’t look for sources & library files in the default directory)
- -Ldir (Look for program libraries also in dir)

• The switches that are not directly recognized by gprbuild and passed to the
Ada compiler are only:

- -nostdlib
- -nostdinc
- -fstack-check
- -fno-inline
- -Oxxx (any switch starting with -O)
- -gxxx (any switch starting with -g)

88

Chapter 3: Gprbuild

3.2 Configuring with GPRconfig

3.2.1 Configuration
GPRbuild requires one configuration file describing the languages and
toolchains to be used, and project files describing the characteristics of the
user project. Typically the configuration file can be created automatically by
GPRbuild based on the languages defined in your projects and the compilers
on your path. In more involved situations — such as cross compilation, or
environments with several compilers for the same language — you may need
to control more precisely the generation of the desired configuration of toolsets.
A tool, GPRconfig, described in Section 3.2 [Configuring with GPRconfig],
page 89), offers this capability. In this chapter most of the examples can use
autoconfiguration.

GPRbuild will start its build process by trying to locate a configuration file.
The following tests are performed in the specified order, and the first that
matches provides the configuration file to use.
• If a file has a base names that matches <target>-<rts>.cgpr,

<target.cgpr, <rts>.cgpr or default.cgpr is found in the default
configuration files directory, this file is used. The target and rts parameters
are specified via the --target and --RTS switches of gprbuild. The
default directory is is ‘share/gpr’ in the installation directory of gprbuild

• If not found, the environment variable GPR_CONFIG is tested to check
whether it contains the name of a valid configuration file. This can ei-
ther be an absolute path name or a base name that will be searched in the
same default directory as above.

• If still not found and you used the --autoconf switch, then a new configu-
ration file is automatically generated based on the specified target and on
the list of languages specified in your projects.
GPRbuild assumes that there are known compilers on your path for each of
the necessary languages. It is preferable and often necessary to manually
generate your own configuration file when:

- using cross compilers (in which case you need to use gprconfig’s
‘--target=’) option,

- using a specific Ada runtime (e.g. ‘--RTS=sjlj’),
- working with compilers not in the path or not first in the path, or
- autoconfiguration does not give the expected results.

GPRconfig provides several ways of generating configuration files. By default, a
simple interactive mode lists all the known compilers for all known languages.
You can then select a compiler for each of the languages; once a compiler has

89

GPRbuild User’s Guide

been selected, only compatible compilers for other languages are proposed. Here
are a few examples of GPRconfig invocation:
• The following command triggers interactive mode. The configuration will

be generated in GPRbuild’s default location, ./default.cgpr), unless ‘-o’
is used.

gprconfig

• The first command below also triggers interactive mode, but the resulting
configuration file has the name and path selected by the user. The second
command shows how GPRbuild can make use of this specific configuration
file instead of the default one.

gprconfig -o path/my_config.cgpr

gprbuild --config=path/my_config.cgpr

• The following command again triggers interactive mode, and only the rele-
vant cross compilers for target ppc-elf will be proposed.

gprconfig --target=ppc-elf

• The next command triggers batch mode and generates at the default loca-
tion a configuration file using the first native Ada and C compilers on the
path.

gprconfig --config=Ada --config=C --batch

• The next command, a combination of the previous examples, creates in
batch mode a configuration file named ‘x.cgpr’ for cross-compiling Ada
with a run-time called hi and using C for the LEON processor.

gprconfig --target=leon-elf --config=Ada,,hi --config=C --batch -o x.cgpr

3.2.2 Using GPRconfig

3.2.3 Description
The GPRconfig tool helps you generate the configuration files for GPRbuild. It
automatically detects the available compilers on your system and, after you
have selected the one needed for your application, it generates the proper con-
figuration file.

3.2.4 Command line arguments
GPRconfig supports the following command line switches:
‘--target=platform’

This switch indicates the target computer on which your application
will be run. It is mostly useful for cross configurations. Examples

90

Chapter 3: Gprbuild

include ‘ppc-elf’, ‘ppc-vx6-windows’. It can also be used in native
configurations and is useful when the same machine can run dif-
ferent kind of compilers such as mingw32 and cygwin on Windows
or x86-32 and x86-64 on GNU Linux. Since different compilers will
often return a different name for those targets, GPRconfig has an
extensive knowledge of which targets are compatible, and will for ex-
ample accept ‘x86-linux’ as an alias for ‘i686-pc-linux-gnu’. The
default target is the machine on which GPRconfig is run.
If you enter the special target ‘all’, then all compilers found on the
PATH will be displayed.

‘--show-targets’
As mentioned above, GPRconfig knows which targets are compat-
ible. You can use this switch to find the list of targets that are
compatible with --target.

‘--config=language[,version[,runtime[,path[,name]]]]’
The intent of this switch is to preselect one or more compilers di-
rectly from the command line. This switch takes several optional
arguments, which you can omit simply by passing the empty string.
When omitted, the arguments will be computed automatically by
GPRconfig.
In general, only ‘language’ needs to be specified, and the first com-
piler on the PATH that can compile this language will be selected. As
an example, for a multi-language application programmed in C and
Ada, the command line would be:

--config=Ada --config=C

‘path’ is the directory that contains the compiler executable, for
instance ‘/usr/bin’ (and not the installation prefix ‘/usr’).
‘name’ should be one of the compiler names defined in the GPRcon-
fig knowledge base. The list of supported names includes ‘GNAT’,
‘GCC’,. . . . This name is generally not needed, but can be used to
distinguish among several compilers that could match the other ar-
guments of ‘--config’.
Another possible more frequent use of ‘name’ is to specify the base
name of an executable. For instance, if you prefer to use a diab
C compiler (executable is called ‘dcc’) instead of ‘gcc’, even if the
latter appears first in the path, you could specify ‘dcc’ as the name
parameter.

gprconfig --config Ada,,,/usr/bin # automatic parameters

gprconfig --config C,,,/usr/bin,GCC # automatic version

gprconfig --config C,,,/usr/bin,gcc # same as above, with exec name

91

GPRbuild User’s Guide

This switch is also the only possibility to include in your project
some languages that are not associated with a compiler. This is
sometimes useful especially when you are using environments like
GPS that support project files. For instance, if you select "Project
file" as a language, the files matching the ‘.gpr’ extension will be
shown in the editor, although they of course play no role for gprbuild
itself.

‘--batch’ If this switch is specified, GPRconfig automatically selects the first
compiler matching each of the --config switches, and generates
the configuration file immediately. It will not display an interactive
menu.

‘-o file’ This specifies the name of the configuration file that will be gener-
ated. If this switch is not specified, a default file is generated in the
installation directory of GPRbuild (assuming you have write access
to that directory), so that it is automatically picked up by GPRbuild
later on. If you select a different output file, you will need to specify
it to GPRbuild.

‘--db directory’
‘--db-’ Indicates another directory that should be parsed for GPRconfig’s

knowledge base. Most of the time this is only useful if you are
creating your own XML description files locally. The second version
of the switch prevents GPRconfig from reading its default knowledge
base.

‘-h’ Generates a brief help message listing all GPRconfig switches and
the default value for their arguments. This includes the location of
the knowledge base, the default target,. . .

3.2.5 Interactive use
When you launch GPRconfig, it first searches for all compilers it can find on
your PATH, that match the target specified by ‘--target’. It is recommended,
although not required, that you place the compilers that you expect to use for
your application in your PATH before you launch gprconfig, since that simplifies
the setup.

GPRconfig then displays the list of all the compilers it has found, along with
the language they can compile, the run-time they use (when applicable),. . . . It
then waits for you to select one of the compilers. This list is sorted by language,
then by order in the PATH environment variable (so that compilers that you are
more likely to use appear first), then by run-time names and finally by version
of the compiler. Thus the first compiler for any language is most likely the one
you want to use.

92

Chapter 3: Gprbuild

You make a selection by entering the letter that appears on the line for each
compiler (be aware that this letter is case sensitive). If the compiler was already
selected, it is deselected.

A filtered list of compilers is then displayed: only compilers that target the
same platform as the selected compiler are now shown. GPRconfig then checks
whether it is possible to link sources compiled with the selected compiler and
each of the remaining compilers; when linking is not possible, the compiler is
not displayed. Likewise, all compilers for the same language are hidden, so that
you can only select one compiler per language.

As an example, if you need to compile your application with several C compil-
ers, you should create another language, for instance called C2, for that purpose.
That will give you the flexibility to indicate in the project files which compiler
should be used for which sources.

The goal of this filtering is to make it more obvious whether you have a good
chance of being able to link. There is however no guarantee that GPRconfig will
know for certain how to link any combination of the remaining compilers.

You can select as many compilers as are needed by your application. Once
you have finished selecting the compilers, select 〈s〉, and GPRconfig will generate
the configuration file.

3.2.6 The GPRconfig knowledge base
GPRconfig itself has no hard-coded knowledge of compilers. Thus there is no
need to recompile a new version of GPRconfig when a new compiler is dis-
tributed.

All knowledge of compilers is embedded in a set of XML files called the
knowledge base. Users can easily contribute to this general knowledge base,
and have GPRconfig immediately take advantage of any new data.

The knowledge base contains various kinds of information:
• Compiler description

When it is run interactively, GPRconfig searches the user’s PATH for known
compilers, and tries to deduce their configuration (version, supported lan-
guages, supported targets, run-times, . . .). From the knowledge base
GPRconfig knows how to extract the relevant information about a compiler.
This step is optional, since a user can also enter all the information manu-
ally. However, it is recommended that the knowledge base explicitly list its
known compilers, to make configuration easier for end users.

• Specific compilation switches
When a compiler is used, depending on its version, target, run-time,. . . ,
some specific command line switches might have to be supplied. The knowl-
edge base is a good place to store such information.

93

GPRbuild User’s Guide

For instance, with the GNAT compiler, using the soft-float runtime should
force gprbuild to use the ‘-msoft-float’ compilation switch.

• Linker options
Linking a multi-language application often has some subtleties, and typi-
cally requires specific linker switches. These switches depend on the list of
languages, the list of compilers,. . . .

• Unsupported compiler mix
It is sometimes not possible to link together code compiled with two par-
ticular compilers. The knowledge base should store this information, so
that end users are informed immediately when attempting to use such a
compiler combination.

The end of this section will describe in more detail the format of this knowledge
base, so that you can add your own information and have GPRconfig advantage
of it.

3.2.6.1 General file format
The knowledge base is implemented as a set of XML files. None of these files has
a special name, nor a special role. Instead, the user can freely create new files,
and put them in the knowledge base directory, to contribute new knowledge.

The location of the knowledge base is ‘$prefix/share/gprconfig’, where
‘$prefix’ is the directory in which GPRconfig was installed. Any file with
extension ‘.xml’ in this directory will be parsed automatically by GPRconfig at
startup.

All files must have the following format:
<?xml version="1.0">

<gprconfig>

...

</gprconfig>

The root tag must be <gprconfig>.
The remaining sections in this chapter will list the valid XML tags that can

be used to replace the “. . . ” code above. These tags can either all be placed in a
single XML file, or split across several files.

3.2.6.2 Compiler description
One of the XML tags that can be specified as a child of <gprconfig> is
<compiler_description>. This node and its children describe one of the com-
pilers known to GPRconfig. The tool uses them when it initially looks for all
compilers known on the user’s PATH environment variable.

This is optional information, but simplifies the use of GPRconfig, since the
user is then able to omit some parameters from the ‘--config’ command line
argument, and have them automatically computed.

94

Chapter 3: Gprbuild

The <compiler_description> node doesn’t accept any XML attribute. How-
ever, it accepts a number of child tags that explain how to query the various
attributes of the compiler. The child tags are evaluated (if necessary) in the
same order as they are documented below.

<name> This tag contains a simple string, which is the name of the compiler.
This name must be unique across all the configuration files, and is
used to identify that compiler_description node.

<compiler_description>

<name>GNAT</name>

</compiler_description>

<executable>
This tag contains a string, which is the name of an executable to
search for on the PATH. Examples are ‘gnatls’, ‘gcc’,. . .
In some cases, the tools have a common suffix, but a prefix that
might depend on the target. For instance, GNAT uses ‘gnatmake’ for
native platforms, but ‘powerpc-wrs-vxworks-gnatmake’ for cross-
compilers to VxWorks. Most of the compiler description is the same,
however. For such cases, the value of the executable node is con-
sidered as beginning a regular expression. The tag also accepts an
optional attribute prefix, which is an integer indicating the paren-
thesis group that contains the prefix. In the following example, you
obtain the version of the GNAT compiler by running either gnatls
or powerpc-wrs-vxworks-gnatls, depending on the name of the
executable that was found.
The regular expression needs to match the whole name of the file,
i.e. it contains an implicit “ˆ” at the start, and an implicit “$” at the
end. Therefore if you specify ‘.*gnatmake’ as the regexp, it will not
match ‘gnatmake-debug’.
A special case is when this node is empty (but it must be specified!).
In such a case, you must also specify the language (see <language>
below) as a simple string. It is then assumed that the specified
language does not require a compiler. In the configurations file (see
Section 3.2.6.5 [Configurations], page 101), you can test whether
that language was specified on the command line by using a filter
such as

<compilers>

<compiler language="name"/>

</compilers>

<executable prefix="1">(powerpc-wrs-vxworks-)?gnatmake</executable>

<version><external>${PREFIX}gnatls -v</external></version>

95

GPRbuild User’s Guide

GPRconfig searches in all directories listed on the PATH for such
an executable. When one is found, the rest of the <compiler_
description> children are checked to know whether the compiler
is valid. The directory in which the executable was found becomes
the “current directory” for the remaining XML children.

<target>

This node indicates how to query the target architecture for the
compiler. See Section 3.2.6.3 [GPRconfig external values], page 97
for valid children.
If this isn’t specified, the compiler will always be considered as
matching on the current target.

<version>
This tag contains any of the nodes defined in Section 3.2.6.3
[GPRconfig external values], page 97 below. It shows how to query
the version number of the compiler. If the version cannot be found,
the executable will not be listed in the list of compilers.

<variable name="varname">
This node will define a user variable which may be later referenced.
The variables are evaluated just after the version but before the
languages and the runtimes nodes. See Section 3.2.6.3 [GPRconfig
external values], page 97 below for valid children of this node. If the
evaluation of this variable is empty then the compiler is considered
as invalid.

<languages>
This node indicates how to query the list of languages. See Sec-
tion 3.2.6.3 [GPRconfig external values], page 97 below for valid
children of this node.
The value returned by the system will be split into words. As a
result, if the returned value is “ada,c,c++”, there are three languages
supported by the compiler (and three entries are added to the menu
when using GPRconfig interactively).
If the value is a simple string, the words must be comma-separated,
so that you can specify languages whose names include spaces. How-
ever, if the actual value is computed from the result of a command,
the words can also be space-separated, to be compatible with more
tools.

<runtimes>
This node indicates how to query the list of supported runtimes
for the compiler. See Section 3.2.6.3 [GPRconfig external values],

96

Chapter 3: Gprbuild

page 97 below for valid children. The returned value is split into
words as for <languages>.
As a special case, gprconfig will merge two runtimes if the XML
nodes refer to the same directories after normalization and resolu-
tion of links. As such, on Unix systems, the "adalib" link to "rts-
native/adalib" (or similar) will be ignored and only the "native"
runtime will be displayed.

3.2.6.3 GPRconfig external values
A number of the XML nodes described above can contain one or more children,
and specify how to query a value from an executable. Here is the list of valid
contents for these nodes. The <directory> and <external> children can be
repeated multiple times, and the <filter> and <must_match> nodes will be ap-
plied to each of these. The final value of the external value is the concatenation
of the computation for each of the <directory> and <external> nodes.
• A simple string

A simple string given in the node indicates a constant. For instance, the
list of supported languages might be defined as:

<compiler_description>

<name>GNAT</name>

<executable>gnatmake</executable>

<languages>Ada</languages>

</compiler_description>

for the GNAT compiler, since this is an Ada-only compiler.
Variables can be referenced in simple strings.

• <getenv name="variable" />

If the contents of the node is a <getenv> child, the value of the environment
variable variable is returned. If the variable is not defined, this is an error
and the compiler is ignored.

<compiler_description>

<name>GCC-WRS</name>

<executable prefix="1">cc(arm|pentium)</executable>

<version>

<getenv name="WIND_BASE" />

</version>

</compile_description>

• <external>command</external>

If the contents of the node is an <external> child, this indicates that a
command should be run on the system. When the command is run, the
current directory (i.e., the one that contains the executable found through
the <executable> node), is placed first on the PATH. The output of the com-
mand is returned and may be later filtered. The command is not executed

97

GPRbuild User’s Guide

through a shell; therefore you cannot use output redirection, pipes, or other
advanced features.
For instance, extracting the target processor from gcc can be done with:

<version>

<external>gcc -dumpmachine</external>

</version>

Since the PATH has been modified, we know that the gcc command that is
executed is the one from the same directory as the <external> node.
Variables are substituted in command.

• <grep regexp="regexp" group="0" />

This node must come after the previously described ones. It is used to
further filter the output. The previous output is matched against the reg-
ular expression regexp and the parenthesis group specified by group is
returned. By default, group is 0, which indicates the whole output of the
command.
For instance, extracting the version number from gcc can be done with:

<version>

<external>gcc -v</external>

<grep regexp="^gcc version (\S+)" group="1" />

</version>

• <directory group="0" contents="">regexp</directory>

If the contents of the node is a <directory> child, this indicates that
GPRconfig should find all the files matching the regular expression. Regexp
is a path relative to the directory that contains the <executable> file, and
should use unix directory separators (ie ’/’), since the actual directory will
be converted into this format before the match, for system independence of
the knowledge base.
The group attribute indicates which parenthesis group should be returned.
It defaults to 0 which indicates the whole matched path. If this attribute is
a string rather than an integer, then it is the value returned.
regexp can be any valid regular expression. This will only match a directory
or file name, not a subdirectory. Remember to quote special characters,
including “.”, if you do not mean to use a regexp.
The optional attribute contents can be used to indicate that the contents
of the file should be read. The first line that matches the regular expression
given by contents will be used as a file path instead of the file matched
by regexp. This is in general used on platforms that do not have symbolic
links, and a file is used instead of a symbolic link. In general, this will work
better than group specifies a string rather than a parenthesis group, since
the latter will match the path matched by regexp, not the one read in the
file.

98

Chapter 3: Gprbuild

For instance, finding the list of supported runtimes for the GNAT compiler
is done with:

<runtimes>

<directory group="1">

\.\./lib/gcc/${TARGET}/.*/rts-(.*)/adainclude

</directory>

<directory group="default">

\.\./lib/gcc/${TARGET}/.*/adainclude

</directory>

</runtimes>

Note the second node, which matches the default run-time, and displays it
as such.

• <filter>value1,value2,...</filter>

This node must come after one the previously described ones. It is used
to further filter the output. The previous output is split into words (it is
considered as a comma-separated or space-separated list of words), and
only those words in ‘value1’, ‘value2’,. . . are kept.
For instance, the gcc compiler will return a variety of supported languages,
including “ada”. If we do not want to use it as an Ada compiler we can
specify:

<languages>

<external regexp="languages=(\S+)" group="1">gcc -v</external>

<filter>c,c++,fortran</filter>

</languages>

• <must_match>regexp</must_match>

If this node is present, then the filtered output is compared with the spec-
ified regular expression. If no match is found, then the executable is not
stored in the list of known compilers.
For instance, if you want to have a <compiler_description> tag specific
to an older version of GCC, you could write:

<version>

<external regexp="gcc version (\S+)"

group="1">gcc -v </external>

<must_match>2.8.1</must_match>

</version>

Other versions of gcc will not match this <compiler_description> node.

3.2.6.4 GPRconfig variable substitution
The various compiler attributes defined above are made available as variables
in the rest of the XML files. Each of these variables can be used in the value of
the various nodes (for instance in <directory>), and in the configurations (see
Section 3.2.1 [Configuration], page 89).

99

GPRbuild User’s Guide

A variable is referenced by ${name} where name is either a user variable or a
predefined variable. An alternate reference is $name where name is a sequence
of alpha numeric characters or underscores. Finally $$ is replaced by a simple
$.

User variables are defined by <variable> nodes and may override predefined
variables. To avoid a possible override use lower case names.

The variables are used in two contexts: either in a <compiler_description>
node, in which case the variable refers to the compiler we are describing, or
within a <configuration> node. In the latter case, and since there might be
several compilers selected, you need to further specify the variable by adding
in parenthesis the language of the compiler you are interested in.

For instance, the following is invalid:
<configuration> <compilers> <compiler name="GNAT" /> </compilers> <targets negate="true"> <tar-

get name="^powerpc-elf$"/> </targets> <config> package Compiler is for Driver ("Ada") use "${PATH}gcc"; -

- Invalid ! end Compiler; </config> </configuration>

The trouble with the above is that if you are using multiple languages like
C and Ada, both compilers will match the "negate" part, and therefore there is
an ambiguity for the value of ${PATH}. To prevent such issues, you need to use
the following syntax instead when inside a <configuration> node:

for Driver ("Ada") use "${PATH(ada)}gcc"; -- Correct

Predefined variables are always in upper case. Here is the list of predefined
variables
EXEC is the name of the executable that was found through <executable>.

It only contains the basename, not the directory information.
HOST is replaced by the architecture of the host on which GPRconfig is run-

ning. This name is hard-coded in GPRconfig itself, and is generated
by configure when GPRconfig was built.

TARGET is replaced by the target architecture of the compiler, as returned by
the <target> node. This is of course not available when computing
the target itself.
This variable takes the language of the compiler as an optional
index when in a <configuration> block: if the language is specified,
the target returned by that specific compiler is used; otherwise,
the normalized target common to all the selected compilers will be
returned (target normalization is also described in the knowledge
base’s XML files).

VERSION is replaced by the version of the compiler. This is not available when
computing the target or, of course, the version itself.

PREFIX is replaced by the prefix to the executable name, as defined by the
<executable> node.

100

Chapter 3: Gprbuild

PATH is the current directory, i.e. the one containing the executable found
through <executable>. It always ends with a directory separator.

LANGUAGE is the language supported by the compiler, always folded to lower-
case

RUNTIME
RUNTIME_DIR

This string will always be substituted by the empty string when the
value of the external value is computed. These are special strings
used when substituting text in configuration chunks.
RUNTIME_DIR always end with a directory separator.

GPRCONFIG_PREFIX
is the directory in which GPRconfig was in-
stalled (e.g ‘"/usr/local/"’ if the executable is
‘"/usr/local/bin/gprconfig"’. This directory always ends
with a directory separator. This variable never takes a language in
parameter, even within a <configuration> node.

If a variable is not defined, an error message is issued and the variable is
substituted by an empty string.

3.2.6.5 Configurations
The second type of information stored in the knowledge base are the chunks of
gprbuild configuration files.

Each of these chunks is also placed in an XML node that provides optional
filters. If all the filters match, then the chunk will be merged with other similar
chunks and placed in the final configuration file that is generated by GPRconfig.

For instance, it is possible to indicate that a chunk should only be included
if the GNAT compiler with the soft-float runtime is used. Such a chunk can
for instance be used to ensure that Ada sources are always compiled with the
-msoft-float command line switch.

GPRconfig does not perform sophisticated merging of chunks. It simply
groups packages together. For example, if the two chunks are:

chunk1:

package Language_Processing is
for Attr1 use ("foo");

end Language_Processing;

chunk2:

package Language_Processing is
for Attr1 use ("bar");

end Language_Processing;

Then the final configuration file will look like:

101

GPRbuild User’s Guide

package Language_Processing is
for Attr1 use ("foo");

for Attr1 use ("bar");

end Language_Processing;

As a result, to avoid conflicts, it is recommended that the chunks be written
so that they easily collaborate together. For instance, to obtain something
equivalent to

package Language_Processing is
for Attr1 use ("foo", "bar");

end Language_Processing;

the two chunks above should be written as:
chunk1:

package Language_Processing is
for Attr1 use Language_Processing’Attr1 & ("foo");

end Language_Processing;

chunk2:

package Language_Processing is
for Attr1 use Language_Processing’Attr1 & ("bar");

end Language_Processing;

The chunks are described in a <configuration>XML node. The most important
child of such a node is <config>, which contains the chunk itself. For instance,
you would write:

<configuration>

... list of filters, see below
<config>

package Language_Processing is
for Attr1 use Language_Processing’Attr1 & ("foo");

end Language_Processing;

</config>

</configuration>

If <config> is an empty node (i.e., ‘<config/>’ or ‘<config></config>’) was
used, then the combination of selected compilers will be reported as invalid, in
the sense that code compiled with these compilers cannot be linked together.
As a result, GPRconfig will not create the configuration file.

The special variables (see Section 3.2.6.4 [GPRconfig variable substitution],
page 99) are also substituted in the chunk. That allows you to compute some
attributes of the compiler (its path, the runtime,. . .), and use them when gen-
erating the chunks.

The filters themselves are of course defined through XML tags, and can be
any of:
<compilers negate="false">

This filter contains a list of <compiler> children. The <compilers>
filter matches if any of its children match. However, you can have
several <compilers> filters, in which case they must all match.

102

Chapter 3: Gprbuild

This can be used to include linker switches chunks. For instance,
the following code would be used to describe the linker switches to
use when GNAT 5.05 or 5.04 is used in addition to g++ 3.4.1:

<configuration>

<compilers>

<compiler name="GNAT" version="5.04" />

<compiler name="GNAT" version="5.05" />

</compilers>

<compilers>

<compiler name="G++" version="3.4.1" />

</compilers>

...

</configuration>

If the attribute negate is ‘true’, then the meaning of this filter is
inverted, and it will match if none of its children matches.
The format of the <compiler> is the following:

<compiler name="name" version="..."

runtime="..." language="..." />

The name and language attributes, when specified, match the corre-
sponding attributes used in the <compiler_description> children.
All other attributes are regular expressions, which are matched
against the corresponding selected compilers. When an attribute
is not specified, it will always match. Matching is done in a case-
insensitive manner.
For instance, to check a GNAT compiler in the 5.x family, use:

<compiler name="GNAT" version="5.\d+" />

<hosts negate="false">
This filter contains a list of <host> children. It matches when any
of its children matches. You can specify only one <hosts> node.
The format of <host> is a node with a single mandatory attribute
name, which is a regexp matched against the architecture on which
GPRconfig is running. The name of the architecture was computed
by configure when GPRconfig was built. Note that the regexp
might match a substring of the host name, so you might want to
surround it with "ˆ" and "$" so that it only matches the whole host
name (for instance, "elf" would match "powerpc-elf", but "ˆelf$"
would not).
If the negate attribute is ‘true’, then the meaning of this filter is
inverted, and it will match when none of its children matches.
For instance, to active a chunk only if the compiler is running on an
intel linux machine, use:

103

GPRbuild User’s Guide

<hosts>

<host name="i.86-.*-linux(-gnu)?" />

</hosts>

<targets negate="false">
This filter contains a list of <target> children. It behaves exactly
like <hosts>, but matches against the architecture targeted by the
selected compilers. For instance, to activate a chunk only when the
code is targeted for linux, use:
If the negate attribute is ‘true’, then the meaning of this filter is
inverted, and it will match when none of its children matches.

<targets>

<target name="i.86-.*-linux(-gnu)?" />

</targets>

3.3 Configuration File Reference
A text file using the project file syntax. It defines languages and their charac-
teristics as well as toolchains for those languages and their characteristics.

GPRbuild needs to have a configuration file to know the different character-
istics of the toolchains that can be used to compile sources and build libraries
and executables.

A configuration file is a special kind of project file: it uses the same syntax
as a standard project file. Attributes in the configuration file define the config-
uration. Some of these attributes have a special meaning in the configuration.

The default name of the configuration file, when not specified to GPRbuild
by switches ‘--config=’ or ‘--autoconf=’ is ‘default.cgpr’. Although the name
of the configuration file can be any valid file name, it is recommended that its
suffix be ‘.cgpr’ (for Configuration GNAT Project), so that it cannot be confused
with a standard project file which has the suffix ‘.gpr’.

When ‘default.cgpr’ cannot be found in the configuration project path,
GPRbuild invokes GPRconfig to create a configuration file.

In the following description of the attributes, when an attribute is an
associative array indexed by the language name, for example Spec_Suffix
(<language>), then the name of the language is case insensitive. For example,
both C and c are allowed.

Any attribute may appear in a configuration project file. All attributes in
a configuration project file are inherited by each user project file in the project
tree. However, usually only the attributes listed below make sense in the
configuration project file.

3.3.1 Project Level Attributes

104

Chapter 3: Gprbuild

3.3.1.1 General Attributes
• Default Language

Specifies the name of the language of the immediate sources of a project
when attribute Languages is not declared in the project. If attribute
Default_Language is not declared in the configuration file, then each user
project file in the project tree must have an attribute Languages declared,
unless it extends another project. Example:

for Default_Language use "ada";

• Run Path Option
Specifies a “run path option”; i.e., an option to use when linking an ex-
ecutable or a shared library to indicate the path where to look for other
libraries. The value of this attribute is a string list. When linking an ex-
ecutable or a shared library, the search path is concatenated with the last
string in the list, which may be an empty string. Example:

for Run_Path_Option use ("-Wl,-rpath,");

• Toolchain Version (<language>)
Specifies a version for a toolchain, as a single string. This toolchain version
is passed to the library builder. Example:

for Toolchain_Version ("Ada") use "GNAT 6.1";

This attribute is used by GPRbind to decide on the names of the shared
GNAT runtime libraries.

• Toolchain Description (<language>)
Specifies as a single string a description of a toolchain. This attribute is
not directly used by GPRbuild or its auxiliary tools (GPRbind and GPRlib)
but may be used by other tools, for example GPS. Example:

for Toolchain_Description ("C") use "gcc version 4.1.3 20070425";

3.3.1.2 General Library Related Attributes
• Library Support

Specifies the level of support for library project. If this attribute is not
specified, then library projects are not supported. The only potential values
for this attribute are none, static_only and full. Example:

for Library_Support use "full";

• Library Builder
Specifies the name of the executable for the library builder. Example:

105

GPRbuild User’s Guide

for Library_Builder use "/.../gprlib";

3.3.1.3 Archive Related Attributes
• Archive Builder

Specifies the name of the executable of the archive builder with the mini-
mum options, if any. Example:

for Archive_Builder use ("ar", "cr");

• Archive Indexer
Specifies the name of the executable of the archive indexer with the min-
imum options, if any. If this attribute is not specified, then there is no
archive indexer. Example:

for Archive_Indexer use ("ranlib");

• Archive Suffix
Specifies the suffix of the archives. If this attribute is not specified, then
the suffix of the archives is defaulted to ‘.a’. Example:

for Archive_Suffix use ".olb"; -- for VMS

• Library Partial Linker
Specifies the name of the executable of the partial linker with the options
to be used, if any. If this attribute is not specified, then there is no partial
linking. Example:

for Library_Partial_Linker use ("gcc", "-nostdlib", "-Wl,-r", "-o");

3.3.1.4 Shared Library Related Attributes
• Shared Library Prefix

Specifies the prefix of the file names of shared libraries. When this attribute
is not specified, the prefix is lib. Example:

for Shared_Library_Prefix use ""; -- for Windows, if needed

• Shared Library Suffix
Specifies the suffix of the file names of shared libraries. When this attribute
is not specified, the suffix is ‘.so’. Example:

for Shared_Library_Suffix use ".dll"; -- for Windows

106

Chapter 3: Gprbuild

• Symbolic Link Supported
Specifies if symbolic links are supported by the platforms. The possible
values of this attribute are "false" (the default) and "true". When this
attribute is not specified, symbolic links are not supported.

for Symbolic_Link_Supported use "true";

• Library Major Minor ID Supported
Specifies if major and minor IDs are supported for shared libraries. The pos-
sible values of this attribute are "false" (the default) and "true". When
this attribute is not specified, major and minor IDs are not supported.

for Library_Major_Minor_ID_Supported use "True";

• Library Auto Init Supported
Specifies if library auto initialization is supported. The possible values of
this attribute are "false" (the default) and "true". When this attribute is
not specified, library auto initialization is not supported.

for Library_Auto_Init_Supported use "true";

• Shared Library Minimum Switches
Specifies the minimum options to be used when building a shared library.
These options are put in the appropriate section in the library exchange file
when the library builder is invoked. Example:

for Shared_Library_Minimum_Switches use ("-shared");

• Library Version Switches
Specifies the option or options to be used when a library version is used.
These options are put in the appropriate section in the library exchange file
when the library builder is invoked. Example:

for Library_Version_Switches use ("-Wl,-soname,");

• Runtime Library Dir (<language>)
Specifies the directory for the runtime libraries for the language. Example:

for Runtime_Library_Dir ("Ada") use "/path/to/adalib";

This attribute is used by GPRlib to link shared libraries with Ada code.

3.3.2 Package Naming
Attributes in package Naming of a configuration file specify defaults. These
attributes may be used in user project files to replace these defaults.

The following attributes usually appear in package Naming of a configuration
file:

107

GPRbuild User’s Guide

• Spec Suffix (<language>)
Specifies the default suffix for a “spec” or header file. Examples:

for Spec_Suffix ("Ada") use ".ads";

for Spec_Suffix ("C") use ".h";

for Spec_Suffix ("C++") use ".hh";

• Body Suffix (<language>)
Specifies the default suffix for a “body” or a source file. Examples:

for Body_Suffix ("Ada") use ".adb";

for Body_Suffix ("C") use ".c";

for Body_Suffix ("C++") use ".cpp";

• Separate Suffix
Specifies the suffix for a subunit source file (separate) in Ada. If attribute
Separate_Suffix is not specified, then the default suffix of subunit source
files is the same as the default suffix for body source files. Example:

for Separate_Suffix use ".sep";

• Casing
Specifies the casing of spec and body files in a unit based language (such
as Ada) to know how to map a unit name to its file name. The values for
this attribute may only be "lowercase", "UPPERCASE" and "Mixedcase".
The default, when attribute Casing is not specified is lower case. This
attribute rarely needs to be specified, since on platforms where file names
are not case sensitive (such as Windows or VMS) the default (lower case)
will suffice.

• Dot Replacement
Specifies the string to replace a dot (“.”) in unit names of a unit based lan-
guage (such as Ada) to obtain its file name. If there is any unit based lan-
guage in the configuration, attribute Dot_Replacement must be declared.
Example:

for Dot_Replacement use "-";

3.3.3 Package Builder
• Executable Suffix

Specifies the default executable suffix. If no attribute Executable_Suffix
is declared, then the default executable suffix for the host platform is used.
Example:

for Executable_Suffix use ".exe";

108

Chapter 3: Gprbuild

3.3.4 Package Compiler

3.3.4.1 General Compilation Attributes
• Driver (<language>)

Specifies the name of the executable for the compiler of a language. The
single string value of this attribute may be an absolute path or a relative
path. If relative, then the execution path is searched. Specifying the empty
string for this attribute indicates that there is no compiler for the language.
Examples:

for Driver ("C++") use "g++";

for Driver ("Ada") use "/.../bin/gcc";

for Driver ("Project file") use "";

• Required Switches (<language>)
Specifies the minimum options that must be used when invoking the com-
piler of a language. Examples:

for Required_Switches ("C") use ("-c", "-x", "c");

for Required_Switches ("Ada") use ("-c", "-x", "ada", "-gnatA");

• PIC Option (<language>)
Specifies the option or options that must be used when compiling a source
of a language to be put in a shared library. Example:

for PIC_Option ("C") use ("-fPIC");

3.3.4.2 Mapping File Related Attributes
• Mapping File Switches (<language>)

Specifies the switch or switches to be used to specify a mapping file to the
compiler. When attribute Mapping_File_Switches is not declared, then no
mapping file is specified to the compiler. The value of this attribute is a
string list. The path name of the mapping file is concatenated with the last
string in the string list, which may be empty. Example:

for Mapping_File_Switches ("Ada") use ("-gnatem=");

• Mapping Spec Suffix (<language>)
Specifies, for unit based languages that support mapping files, the suffix
in the mapping file that needs to be added to the unit name for specs.
Example:

for Mapping_Spec_Suffix ("Ada") use "%s";

109

GPRbuild User’s Guide

• Mapping Body Suffix (<language>)
Specifies, for unit based languages that support mapping files, the suffix
in the mapping file that needs to be added to the unit name for bodies.
Example:

for Mapping_Spec_Suffix ("Ada") use "%b";

3.3.4.3 Config File Related Attributes
In the value of config file attributes defined below, there are some placeholders
that GPRbuild will replace. These placeholders are:
• %u : the unit name
• %f : the file name of the source
• %s : the spec suffix
• %b : the body suffix
• %c : the casing
• %d : the dot replacement string

Attributes:
• Config File Switches (<language>)

Specifies the switch or switches to be used to specify a configuration file to
the compiler. When attribute Config_File_Switches is not declared, then
no config file is specified to the compiler. The value of this attribute is a
string list. The path name of the config file is concatenated with the last
string in the string list, which may be empty. Example:

for Config_File_Switches ("Ada") use ("-gnatec=");

• Config Body File Name (<language>)
Specifies the line to be put in a config file to indicate the file name of a body.
Example:

for Config_Body_File_Name ("Ada") use

"pragma Source_File_Name_Project (%u, Body_File_Name => ""%f"");";

• Config Spec File Name (<language>)
Specifies the line to be put in a config file to indicate the file name of a spec.
Example:

for Config_Spec_File_Name ("Ada") use

"pragma Source_File_Name_Project (%u, Spec_File_Name => ""%f"");";

• Config Body File Name Pattern (<language>)
Specifies the line to be put in a config file to indicate a body file name
pattern. Example:

110

Chapter 3: Gprbuild

for Config_Body_File_Name_Pattern ("Ada") use

"pragma Source_File_Name_Project " &

" (Body_File_Name => ""*%b""," &

" Casing => %c," &

" Dot_Replacement => ""%d"");";

• Config Spec File Name Pattern (<language>)
Specifies the line to be put in a config file to indicate a spec file name pattern.
Example:

for Config_Spec_File_Name_Pattern ("Ada") use

"pragma Source_File_Name_Project " &

" (Spec_File_Name => ""*%s""," &

" Casing => %c," &

" Dot_Replacement => ""%d"");";

• Config File Unique (<language>)
Specifies, for languages that support config files, if several config files may
be indicated to the compiler, or not. This attribute may have only two val-
ues: "true" or "false" (case insensitive). The default, when this attribute
is not specified, is "false". When the value "true" is specified for this
attribute, GPRbuild will concatenate the config files, if there are more than
one. Example:

for Config_File_Unique ("Ada") use "True";

3.3.4.4 Dependency Related Attributes
There are two dependency-related attributes: Dependency_Switches and
Dependency_Driver. If neither of these two attributes are specified for a lan-
guage other than Ada, then the source needs to be (re)compiled if the object file
does not exist or the source file is more recent than the object file or the switch
file.
• Dependency Switches (<language>)

For languages other than Ada, attribute Dependency_Switches specifies
the option or options to add to the compiler invocation so that it creates
the dependency file at the same time. The value of attribute Dependency_
Option is a string list. The name of the dependency file is added to the last
string in the list, which may be empty. Example:

for Dependency_Switches ("C") use ("-Wp,-MD,");

With these Dependency_Switches, when compiling ‘file.c’ the compiler
will be invoked with the option ‘-Wp,-MD,file.d’.

111

GPRbuild User’s Guide

• Dependency Driver (<language>)
Specifies the command and options to create a dependency file for a source.
The full path name of the source is appended to the last string of the string
list value. Example:

for Dependency_Driver ("C") use ("gcc", "-E", "-Wp,-M", "");

Usually, attributes Dependency_Switches and Dependency_Driver are not
both specified.

3.3.4.5 Search Path Related Attributes
• Include Switches (<language>)

Specifies the option or options to use when invoking the compiler to indicate
that a directory is part of the source search path. The value of this attribute
is a string list. The full path name of the directory is concatenated with the
last string in the string list, which may be empty. Example:

for Include_Switches ("C") use ("-I");

Attribute Include_Switches is ignored if either one of the attributes
Include_Path or Include_Path_File are specified.

• Include Path (<language>)
Specifies the name of an environment variable that is used by the compiler
to get the source search path. The value of the environment variable is the
source search path to be used by the compiler. Example:

for Include_Path ("C") use "CPATH";

for Include_Path ("Ada") use "ADA_INCLUDE_PATH";

Attribute Include_Path is ignored if attribute Include_Path_File is de-
clared for the language.

• Include Path File (<language>)
Specifies the name of an environment variable that is used by the compiler
to get the source search path. The value of the environment variable is the
path name of a text file that contains the path names of the directories of
the source search path. Example:

for Include_Path_File ("Ada") use "ADA_PRJ_INCLUDE_FILE";

3.3.5 Package Binder
• Driver (<language>)

Specifies the name of the executable of the binder driver. When this at-
tribute is not specified, there is no binder for the language. Example:

112

Chapter 3: Gprbuild

for Driver ("Ada") use "/.../gprbind";

• Required Switches (<language>)
Specifies the minimum options to be used when invoking the binder driver.
These options are put in the appropriate section in the binder exchange file,
one option per line. Example:

for Required_Switches ("Ada") use ("--prefix=<prefix>");

• Prefix (<language>)
Specifies the prefix to be used in the name of the binder exchange file.
Example:

for Prefix ("C++") use ("c__");

• Objects Path (<language>)
Specifies the name of an environment variable that is used by the compiler
to get the object search path. The value of the environment variable is the
object search path to be used by the compiler. Example:

for Objects_Path ("Ada") use "ADA_OBJECTS_PATH";

• Objects Path File (<language>)
Specifies the name of an environment variable that is used by the compiler
to get the object search path. The value of the environment variable is the
path name of a text file that contains the path names of the directories of
the object search path. Example:

for Objects_Path_File ("Ada") use "ADA_PRJ_OBJECTS_FILE";

3.3.6 Package Linker
• Driver

Specifies the name of the executable of the linker. Example:
for Driver use "g++";

• Required Switches
Specifies the minimum options to be used when invoking the linker. Those
options are happened at the end of the link command so that potentially
conflicting user options take precedence.

• Map File Option
Specifies the option to be used when the linker is asked to produce a map
file.

113

GPRbuild User’s Guide

for Map_File_Option use "-Wl,-Map,";

• Max Command Line Length
Specifies the maximum length of the command line to invoke the linker. If
this maximum length is reached, a response file will be used to shorten the
length of the command line. This is only taken into account when attribute
Response File Format is specified.

for Max_Command_Line_Length use "8000";

• Response File Format
Specifies the format of the response file to be generated when the max-
imum length of the command line to invoke the linker is reached. This
is only taken into account when attribute Max Command Line Length is
specified.
The allowed case-insensitive values are:
• "GNU" Used when the underlying linker is gnu ld.
• "Object List" Used when the response file is a list of object files, one

per line.
• "GCC GNU" Used with recent version of gcc when the underlined

linker is gnu ld.
• "GCC Object List" Used with recent version of gcc when the underly-

ing linker is not gnu ld.
for Response_File_Format use "GCC_GNU";

• Response File Switches Specifies the option(s) that must precede the re-
sponse file name when when invoking the linker. This is only taken
into account when both attributes Max Command Line Length and Re-
sponse File Format are specified.

for Response_File_Switches use ("-Wl,-f,");

3.4 Cleaning up with GPRclean
The GPRclean tool removes the files created by GPRbuild. At a minimum, to
invoke GPRclean you must specify a main project file in a command such as
gprclean proj.gpr or gprclean -P proj.gpr.

Examples of invocation of GPRclean:
gprclean -r prj1.gpr

gprclean -c -P prj2.gpr

114

Chapter 3: Gprbuild

3.4.1 Switches for GPRclean
The switches for GPRclean are:
• ‘--config=<main config project file name>’ : Specify the configuration

project file name
• ‘--autoconf=<config project file name>’

This specifies a configuration project file name that already exists or will be
created automatically. Option ‘--autoconf=’ cannot be specified more than
once. If the configuration project file specified with ‘--autoconf=’ exists,
then it is used. Otherwise, GPRconfig is invoked to create it automatically.

• ‘-c’ : Only delete compiler-generated files. Do not delete executables and
libraries.

• ‘-f’ : Force deletions of unwritable files
• ‘-F’ : Display full project path name in brief error messages
• ‘-h’ : Display this message
• ‘-n’ : Do not delete files, only list files to delete
• ‘-P<proj>’ : Use Project File <proj>.
• ‘-q’ : Be quiet/terse. There is no output, except to report problems.
• ‘-r’ : (recursive) Clean all projects referenced by the main project directly

or indirectly. Without this switch, GPRclean only cleans the main project.
• ‘-v’ : Verbose mode
• ‘-vPx’ : Specify verbosity when parsing Project Files. x = 0 (default), 1 or 2.
• ‘-Xnm=val’ : Specify an external reference for Project Files.

115

GPRbuild User’s Guide

116

Appendix A: GNU Free Documentation License

Appendix A GNU Free Documentation
License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written doc-
ument “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and pub-
lisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this
License. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related

117

GPRbuild User’s Guide

matters) and contains nothing that could fall directly within that overall subject.
(For example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.

A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, whose
contents can be viewed and edited directly and straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML designed
for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading

118

Appendix A: GNU Free Documentation License

or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and
the Document’s license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent copy
along with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard net-
work protocols. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified

119

GPRbuild User’s Guide

Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of

the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its principal
authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving

the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network lo-
cations given in the Document for previous versions it was based on. These
may be placed in the “History” section. You may omit a network location for
a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the
section’s title, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

120

Appendix A: GNU Free Documentation License

M. Delete any section entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title
with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties – for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in
the various original documents, forming one section entitled “History”; likewise

121

GPRbuild User’s Guide

combine any sections entitled “Acknowledgements”, and any sections entitled
“Dedications”. You must delete all sections entitled “Endorsements.”

Heading 6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents

released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a com-
pilation is called an “aggregate”, and this License does not apply to the other
self-contained works thus compiled with the Document, on account of their be-
ing thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one quarter of the entire
aggregate, the Document’s Cover Texts may be placed on covers that surround
only the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original
English version of this License, the original English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,

122

Appendix A: GNU Free Documentation License

sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents
To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after
the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation; with
the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled “GNU Free
Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead
of saying which ones are invariant. If you have no Front-Cover Texts, write
“no Front-Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for
Back-Cover Texts.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

123

GPRbuild User’s Guide

124

Appendix A: Index

Index

-
‘--batch’ for gprconfig 92
‘--config’ for gprconfig 91
‘--db’ for gprconfig . 92
‘--show-target’ for gprconfig 91
‘--subdirs=’ (gnatmake and gnatclean) . . . 64
‘--target’ for gprconfig 90
‘-aP’ (any project-aware tool) 63
‘-eL’ (any project-aware tool) 64
‘-h’ for gprconfig . 92
‘-o’ for gprconfig . 92
‘-P’ (any project-aware tool) 63
‘-v’ option (for GPRbuild) 12
‘-vP’ (any project-aware tool) 63
‘-X’ . 22
‘-X’ (any project-aware tool) 63

A
ADA_PROJECT_PATH . 17

B
Body . 16
Body_Suffix . 15

C
case statement . 23
Casing . 14
command line length . 9

D
Default_Switches . 10
Dot_Replacement . 14

E
Excluded_Source_Dirs . 5
Excluded_Source_Files 6, 33
Excluded_Source_List_File 6, 33
Exec_Dir . 8
Executable . 12

Executable_Suffix . 12
extends all . 34
external . 22
External . 40
Externally_Built . 17

F
Free Documentation License, GNU 117

G
Global_Compilation_Switches 21, 41
Global_Configuration_Pragmas 21, 43
GNU Free Documentation License 117
GPR_PROJECT_PATH . 17
gprconfig, external values 97

I
Ignore_Source_Sub_Dirs. 5
Implementation . 16
Implementation_Exceptions 16
Implementation_Suffix 15

L
Languages . 5
Leading_Library_Options 26
Library_ALI_Dir . 25
Library_Auto_Init . 29
Library_Dir . 24, 29
Library_GCC . 26
Library_Interface . 28
Library_Kind . 25
Library_Name . 24
Library_Options . 26
Library_Reference_Symbol_File 31
Library_Src_Dir . 30
Library_Standalone . 29
Library_Symbol_File . 31
Library_Symbol_Policy 30
Library_Version . 25
License, GNU Free Documentation 117

125

GPRbuild User’s Guide

Linker_Options . 26
Local_Configuration_Pragmas 11
Locally_Removed_Files 6

M
Main . 8
Makefile package in projects 49

N
Naming scheme . 6

O
Object_Dir . 7

P
portability . 4
project file packages . 9
project path . 17
project qualifier. 21

Project_Files . 38
Project_Path . 39

S
scenarios . 22
Separate_Suffix . 15
Source directories . 4
Source directories, recursive. 5
Source_Dirs . 4
Source_Files . 6
Source_List_File . 6
Spec . 15
Spec_Suffix . 14
Specification . 15
Specification_Exceptions 16
Specification_Suffix 14
standalone libraries . 28
Switches . 10, 41

T
typed variable . 23

126

Table of Contents

1 GNAT Project Manager . 1
1.1 Introduction . 1
1.2 Building With Projects . 2

1.2.1 Source Files and Directories . 4
1.2.2 Object and Exec Directory . 7
1.2.3 Main Subprograms . 8
1.2.4 Tools Options in Project Files . 9
1.2.5 Compiling with Project Files . 11
1.2.6 Executable File Names . 12
1.2.7 Avoid Duplication With Variables . 13
1.2.8 Naming Schemes . 13

1.3 Organizing Projects into Subsystems . 16
1.3.1 Project Dependencies . 16
1.3.2 Cyclic Project Dependencies . 18
1.3.3 Sharing Between Projects . 19
1.3.4 Global Attributes . 21

1.4 Scenarios in Projects . 21
1.5 Library Projects . 23

1.5.1 Building Libraries . 24
1.5.2 Using Library Projects . 26
1.5.3 Stand-alone Library Projects . 28
1.5.4 Installing a library with project files . 31

1.6 Project Extension . 31
1.6.1 Project Hierarchy Extension . 33

1.7 Aggregate Projects . 35
1.7.1 Building all main programs from a single project tree 35
1.7.2 Building a set of projects with a single command 36
1.7.3 Define a build environment . 36
1.7.4 Performance improvements in builder . 37
1.7.5 Syntax of aggregate projects . 37
1.7.6 package Builder in aggregate projects . 41

1.8 Aggregate Library Projects . 43
1.8.1 Building aggregate library projects . 43
1.8.2 Syntax of aggregate library projects . 44

1.9 Project File Reference . 45
1.9.1 Project Declaration . 45
1.9.2 Qualified Projects . 47
1.9.3 Declarations . 47
1.9.4 Packages . 48

i

GPRbuild User’s Guide

1.9.5 Expressions . 50
1.9.6 External Values . 51
1.9.7 Typed String Declaration . 52
1.9.8 Variables . 53
1.9.9 Attributes . 54
1.9.10 Case Statements . 59

2 Tools Supporting Project Files . 63
2.1 gnatmake and Project Files . 63

2.1.1 Switches Related to Project Files . 63
2.1.2 Switches and Project Files . 64
2.1.3 Specifying Configuration Pragmas . 67
2.1.4 Project Files and Main Subprograms . 67
2.1.5 Library Project Files . 69

2.2 The GNAT Driver and Project Files . 69
2.3 The Development Environments . 73

3 Gprbuild . 75
3.1 Building with GPRbuild . 76

3.1.1 Command Line . 76
3.1.2 Switches . 77
3.1.3 Initialization . 83
3.1.4 Compilation of one or several sources . 84
3.1.5 Compilation Phase . 85
3.1.6 Post-Compilation Phase . 87
3.1.7 Linking Phase . 87
3.1.8 Incompatibilities with gnatmake . 88

3.2 Configuring with GPRconfig . 89
3.2.1 Configuration . 89
3.2.2 Using GPRconfig . 90
3.2.3 Description . 90
3.2.4 Command line arguments . 90
3.2.5 Interactive use . 92
3.2.6 The GPRconfig knowledge base . 93

3.2.6.1 General file format . 94
3.2.6.2 Compiler description . 94
3.2.6.3 GPRconfig external values . 97
3.2.6.4 GPRconfig variable substitution . 99
3.2.6.5 Configurations . 101

3.3 Configuration File Reference . 104
3.3.1 Project Level Attributes . 104

3.3.1.1 General Attributes . 105

ii

3.3.1.2 General Library Related Attributes . 105
3.3.1.3 Archive Related Attributes . 106
3.3.1.4 Shared Library Related Attributes . 106

3.3.2 Package Naming . 107
3.3.3 Package Builder . 108
3.3.4 Package Compiler . 109

3.3.4.1 General Compilation Attributes . 109
3.3.4.2 Mapping File Related Attributes . 109
3.3.4.3 Config File Related Attributes . 110
3.3.4.4 Dependency Related Attributes . 111
3.3.4.5 Search Path Related Attributes . 112

3.3.5 Package Binder . 112
3.3.6 Package Linker . 113

3.4 Cleaning up with GPRclean . 114
3.4.1 Switches for GPRclean . 115

Appendix A GNU Free Documentation License . . 117

Index . 125

iii

GPRbuild User’s Guide

iv

	GNAT Project Manager
	Introduction
	Building With Projects
	Source Files and Directories
	Object and Exec Directory
	Main Subprograms
	Tools Options in Project Files
	Compiling with Project Files
	Executable File Names
	Avoid Duplication With Variables
	Naming Schemes

	Organizing Projects into Subsystems
	Project Dependencies
	Cyclic Project Dependencies
	Sharing Between Projects
	Global Attributes

	Scenarios in Projects
	Library Projects
	Building Libraries
	Using Library Projects
	Stand-alone Library Projects
	Installing a library with project files

	Project Extension
	Project Hierarchy Extension

	Aggregate Projects
	Building all main programs from a single project tree
	Building a set of projects with a single command
	Define a build environment
	Performance improvements in builder
	Syntax of aggregate projects
	package Builder in aggregate projects

	Aggregate Library Projects
	Building aggregate library projects
	Syntax of aggregate library projects

	Project File Reference
	Project Declaration
	Qualified Projects
	Declarations
	Packages
	Expressions
	External Values
	Typed String Declaration
	Variables
	Attributes
	Case Statements

	Tools Supporting Project Files
	gnatmake and Project Files
	Switches Related to Project Files
	Switches and Project Files
	Specifying Configuration Pragmas
	Project Files and Main Subprograms
	Library Project Files

	The GNAT Driver and Project Files
	The Development Environments

	Gprbuild
	Building with GPRbuild
	Command Line
	Switches
	Initialization
	Compilation of one or several sources
	Compilation Phase
	Post-Compilation Phase
	Linking Phase
	Incompatibilities with gnatmake

	Configuring with GPRconfig
	Configuration
	Using GPRconfig
	Description
	Command line arguments
	Interactive use
	The GPRconfig knowledge base
	General file format
	Compiler description
	GPRconfig external values
	GPRconfig variable substitution
	Configurations

	Configuration File Reference
	Project Level Attributes
	General Attributes
	General Library Related Attributes
	Archive Related Attributes
	Shared Library Related Attributes

	Package Naming
	Package Builder
	Package Compiler
	General Compilation Attributes
	Mapping File Related Attributes
	Config File Related Attributes
	Dependency Related Attributes
	Search Path Related Attributes

	Package Binder
	Package Linker

	Cleaning up with GPRclean
	Switches for GPRclean

	GNU Free Documentation License
	Index

