
PolyORB User’s Guide
Version GPL 2007-20070405

Date: 20 April 2007

Jérôme Hugues, Thomas Quinot

Copyright c© 2003-2007, Free Software Foundation
Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being “GNU Free Documenta-
tion License”, with the Front-Cover Texts being “PolyORB User’s Guide”, and with no
Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

i

Table of Contents

About This Guide. 1
What This Guide Contains . 1
Conventions . 2

1 Introduction to PolyORB 3
1.1 Distributed applications and middleware . 3
1.2 PolyORB a generic middleware with an instance per distribution

model . 3

2 Installation . 5
2.1 Supported Platforms . 5
2.2 Build requirements . 5
2.3 Build instructions . 5
2.4 Additional instructions for cross platforms. 6
2.5 Building the documentation and PolyORB’s examples 6

2.5.1 Build Options . 6
2.5.2 Compiler, Tools and Run-Time libraries Options 7

2.6 Platform notes . 7

3 Overview of PolyORB personalities 9
3.1 Application personalities . 9

3.1.1 CORBA . 9
3.1.2 Distributed System Annex of Ada (DSA) 9
3.1.3 Message Oriented Middleware for Ada (MOMA) 9
3.1.4 Ada Web Server (AWS) . 9

3.2 Protocol personalities . 9
3.2.1 GIOP . 10
3.2.2 SOAP . 10

4 Building an application with PolyORB 11
4.1 Compile-time configuration . 11

4.1.1 Tasking run-times . 11
4.1.2 Middleware tasking policies . 11
4.1.3 Sample files . 11

4.2 Run-time configuration . 12
4.2.1 Using a configuration file . 12
4.2.2 Using environment variables . 12
4.2.3 Using the command line . 12

4.3 Setting up protocol personalities . 13
4.3.1 Activating/Deactivating protocol personalities 13
4.3.2 Configuring protocol personality preferences 13

4.4 Activating debug information . 13

ii PolyORB User’s Guide

4.5 Tracing exceptions . 14
4.6 polyorb-config . 14

5 Tasking model in PolyORB. 17
5.1 PolyORB Tasking runtimes . 17

5.1.1 Full tasking runtime . 17
5.1.2 No tasking runtime . 17
5.1.3 Ravenscar tasking runtime. 17

5.2 PolyORB ORB Tasking policies . 19
5.2.1 No Tasking . 19
5.2.2 Thread Pool . 19
5.2.3 Thread Per Session . 19
5.2.4 Thread Per Request. 19

5.3 PolyORB Tasking configuration . 19
5.4 PolyORB ORB Controller policies . 20

5.4.1 No Tasking . 20
5.4.2 Workers . 20
5.4.3 Half Sync/Half Async . 20
5.4.4 Leader/Followers . 20

5.5 PolyORB ORB Controller configuration . 20

6 CORBA. 23
6.1 What you should know before Reading this section. 23
6.2 Installing CORBA application personality . 23
6.3 Usage of idlac . 23
6.4 Resolving names in a CORBA application . 24

6.4.1 po_cos_naming . 24
6.4.2 Registering the reference to the COS Naming server 25
6.4.3 Using the COS Naming . 25

6.5 The CORBA Interface Repository . 25
6.5.1 po_ir . 25
6.5.2 Using the Interface Repository . 25

6.6 Building a CORBA application with PolyORB 25
6.6.1 echo example . 25

6.6.1.1 IDL definition of an echo object . 26
6.6.1.2 Implementation code for the echo object 26
6.6.1.3 Test code for client and server nodes 28
6.6.1.4 Compilation and execution . 32

6.6.2 Other examples . 32
6.7 Configuring a CORBA application . 33

6.7.1 Configuring PolyORB . 33
6.7.2 Configuring GIOP protocol stack for PolyORB 33
6.7.3 Configuring Security services for PolyORB 33

6.7.3.1 Supported mechasnisms. 33
6.7.3.2 Compile-time configuration . 33
6.7.3.3 Run-time configuration . 33

6.7.4 Command line arguments . 36
6.8 Implementation Notes . 36

iii

6.8.1 Tasking . 36
6.8.2 Implementation of CORBA specifications 36
6.8.3 Additions to the CORBA specifications 36
6.8.4 Interface repository . 36
6.8.5 Policy Domain Managers . 36
6.8.6 Mapping of exceptions . 37
6.8.7 Additional information to CORBA::Unknown 37
6.8.8 Internals packages . 37

6.9 PolyORB’s specific APIs . 37
6.9.1 PolyORB.CORBA_P.CORBALOC . 39
6.9.2 PolyORB.CORBA_P.Naming_Tools . 40
6.9.3 PolyORB.CORBA_P.Server_Tools . 42

7 RT-CORBA . 45
7.1 What you should know before Reading this section. 45
7.2 Installing RT-CORBA . 45
7.3 Configuring RT-CORBA . 45

7.3.1 PolyORB.RTCORBA_P.Setup . 45
7.4 RTCORBA.PriorityMapping . 46
7.5 RTCosScheduling Service . 47

7.5.1 Overview. 47
7.5.2 RTCosScheduling::ClientScheduler 47
7.5.3 RTCosScheduling::ServerScheduler 47

8 Ada Distributed System Annex (DSA) 49
8.1 What you should know before Reading this section. 49
8.2 Installing DSA application personality . 49
8.3 A small example of a DSA application . 49
8.4 Building a DSA application with PolyORB 50

8.4.1 Foreword . 50
8.4.2 Installing po gnatdist . 50
8.4.3 Using po gnatdist with PolyORB . 50

8.5 Running a DSA application . 50
8.6 Configuring a DSA application . 51

9 MOMA . 53
9.1 What you should know before Reading this section. 53
9.2 Installing MOMA application personality . 53
9.3 Package hierarchy . 53

10 Ada Web Server (AWS) 55

iv PolyORB User’s Guide

11 GIOP . 57
11.1 Installing GIOP protocol personality . 57
11.2 GIOP Instances . 57

11.2.1 IIOP . 57
11.2.2 SSLIOP . 57
11.2.3 DIOP . 57
11.2.4 MIOP . 57

11.3 Configuring the GIOP personality . 57
11.3.1 Common configuration parameters . 58
11.3.2 IIOP Configuration Parameters . 58
11.3.3 SSLIOP Configuration Parameters . 59

11.3.3.1 Ciphers name . 59
11.3.3.2 SSLIOP Parameters . 59

11.3.4 DIOP Configuration Parameters . 60
11.3.5 MIOP Configuration Parameters . 61

11.4 Code sets . 61
11.4.1 Supported code sets. 62
11.4.2 Incompatibility in code set support. 62
11.4.3 Adding support for new code sets . 62
11.4.4 Character data Converter . 62
11.4.5 Converters factories . 63
11.4.6 Registering new code sets . 63

12 SOAP. 65
12.1 Installing SOAP protocol personality . 65
12.2 Configuring the SOAP personality . 65

13 Tools . 67
13.1 po_catref . 67
13.2 po_dumpir . 67
13.3 po_names . 67

Appendix A Performance considerations 69

Appendix B Conformance to standards 71
B.1 CORBA standards conformance. 71

B.1.1 CORBA IDL-to-Ada mapping . 71
B.1.2 CORBA Core . 71
B.1.3 CORBA Interoperability . 72
B.1.4 CORBA Interworking . 72
B.1.5 CORBA Quality Of Service . 72
B.1.6 CORBA COS Services . 72
B.1.7 CORBA Specialized services . 72

B.2 RT-CORBA standards conformance . 73
B.3 CSIv2 standards conformance . 73
B.4 CORBA/GIOP standards conformance . 73
B.5 SOAP standards conformance . 74

v

Appendix C References . 75

Appendix D GNU Free Documentation License
. 77

Index . 83

vi PolyORB User’s Guide

1

About This Guide

This guide describes the use of PolyORB, a middleware that enables the construction of
Ada 95 distributed applications.

It describes the features of the middleware and related APIs and tools, and details how
to use them to build Ada 95 applications.

What This Guide Contains

This guide contains the following chapters:

• Chapter 1 [Introduction to PolyORB], page 3 provides a brief description of middleware
and PolyORB’s architecture.

• Chapter 2 [Installation], page 5 details how to configure and install PolyORB on your
system.

• Chapter 3 [Overview of PolyORB personalities], page 9 enumerates the different per-
sonalities, or distribution mechanisms, PolyORB provides.

• Chapter 4 [Building an application with PolyORB], page 11 presents the different steps
to build a distributed application using PolyORB.

• Chapter 5 [Tasking model in PolyORB], page 17 details the use of tasking constructs
within PolyORB.

• Chapter 6 [CORBA], page 23 describes PolyORB’s implementation of OMG’s CORBA.

• Chapter 7 [RT-CORBA], page 45 describes PolyORB’s implementation of RT-CORBA,
the real-time extensions of OMG’s CORBA.

• Chapter 8 [DSA], page 49 describes PolyORB’s implementation of the Ada Distributed
System Annex.

• Chapter 9 [MOMA], page 53 describes PolyORB’s implementation of MOMA, the
Message Oriented Middleware for Ada.

• Chapter 10 [AWS], page 55 describes the integration of the Ada Web Server (AWS)
framework into PolyORB.

• Chapter 11 [GIOP], page 57 describes PolyORB’s implementation of GIOP, the protocol
defined as part of CORBA.

• Chapter 12 [SOAP], page 65 describes PolyORB’s implementation of SOAP.

• Chapter 13 [Tools], page 67 describes PolyORB’s tools.

• Appendix B [Conformance to standards], page 71 discusses the conformance of the
PolyORB’s personalities to the CORBA and SOAP standards.

• Appendix C [References], page 75 provides a list of useful references to complete this
documentation.

• Appendix D [GNU Free Documentation License], page 77 contains the text of the
license under which this document is being distributed.

2 PolyORB User’s Guide

Conventions

Following are examples of the typographical and graphic conventions used in this guide:
• Functions, utility program names, standard names, and classes.
• ‘Option flags’
• ‘File Names’, ‘button names’, and ‘field names’.
• Variables.
• Emphasis.
• [optional information or parameters]
• Examples are described by text

and then shown this way.

Commands that are entered by the user are preceded in this manual by the characters “$ ”
(dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some
other prompt, then the command will appear with the $ replaced by whatever prompt
character you are using.

Full file names are shown with the “/” character as the directory separator; e.g.,
‘parent-dir/subdir/myfile.adb’. If you are using GNAT on a Windows platform, please
note that the “\” character should be used instead.

Chapter 1: Introduction to PolyORB 3

1 Introduction to PolyORB

1.1 Distributed applications and middleware

PolyORB aims at providing a uniform solution to build distributed applications; relying
either on industrial-strength middleware standards such as CORBA, the Distributed System
Annex of Ada 95, distribution programming paradigms such as Web Services, Message
Oriented Middleware (MOM), or to implement application-specific middleware.

Middleware provides a framework that hides the complex issues of distribution, and offers
the programmer high-level abstractions that allow easy and transparent construction of
distributed applications. A number of different standards exist for creating object-oriented
distributed applications. These standards define two subsystems that enable interaction
between application partitions:

• the API seen by the developer’s applicative objects;

• the protocol used by the middleware environment to interact with other nodes in the
distributed application.

Middleware implementations also offer programming guidelines as well as development tools
to ease the construction of large heterogeneous distributed systems. Many issues typical
to distributed programming may still arise: application architectural choice, configuration
or deployment. Since there is no "one size fits all" architecture, choosing the adequate
distribution middleware in its most appropriate configuration is a key design point that
dramatically impacts the design and performance of an application.

Consequently, applications need to rapidly tailor middleware to the specific distribution
model they require. A distribution model is defined by the combination of distribution
mechanisms made available to the application. Common examples of such mechanisms are
Remote Procedure Call (RPC), Distributed Objects or Message Passing. A distribution
infrastructure or middleware refers to software that supports one (or several) distribution
model, e.g.: OMG CORBA, Java Remote Method Invocation (RMI), the Distributed Sys-
tem Annex of Ada 95, Java Message Service (MOM).

1.2 PolyORB a generic middleware with an instance per
distribution model

Typical middleware implementations for one platform support only one set of such inter-
faces, pre-defined configuration capabilities and cannot interoperate with other platforms.
In addition to traditional middleware implementations, PolyORB proposes an original ar-
chitecture to enable support for multiple interoperating distribution models in a uniform
canvas.

PolyORB is a polymorphic, reusable infrastructure for building or prototyping new mid-
dleware adapted to specific application needs. It provides a set of components on top of
which various instances can be elaborated. These instances (or personalities) are views on
PolyORB facilities that are compliant to existing standards, either at the API level (appli-
cation personality) or at the protocol level (protocol personality). These personalities are
mutually exclusive views of the same architecture.

4 PolyORB User’s Guide

The decoupling of application and protocol personalities, and the support for multiple
simultaneous personalities within the same running middleware, are key features required
for the construction of interoperable distributed applications. This allows PolyORB to
communicate with middleware that implement different distribution standards: PolyORB
provides middleware-to-middleware interoperability (M2M).

PolyORB’s modularity allows for easy extension and replacement of its core and per-
sonality components, in order to meet specific requirements. In this way, standard or
application-specific personalities can be created in a streamlined process, from early stage
prototyping to full-featured implementation. The PolyORB architecture also allows the
automatic, just-in-time creation of proxies between incompatible environments.

You may find more information on PolyORB, including technical and scientific pa-
pers on PolyORB, on the project websites: http://libre.adacore.com/polyorb/ and
http://polyorb.objectweb.org/.

Note: PolyORB is the project formerly known as DROOPI, a Distributed Reusable
Object-Oriented Polymorphic Infrastructure

http://libre.adacore.com/polyorb/
http://polyorb.objectweb.org/

Chapter 2: Installation 5

2 Installation

2.1 Supported Platforms

PolyORB has been compiled and successfully tested on the following platforms:
• FreeBSD
• HP-UX
• Linux
• MacOS X
• Solaris
• Windows

Note: PolyORB should compile and run on every target for which GNAT and the
GNAT.Sockets package are available.

2.2 Build requirements

Ada compiler:
• GNAT Pro 5.04a1 or later
• GNAT GPL 2006 or later
• FSF GCC 4.1.1 or later

For builds for cross targets, both a native and a cross compiler are required, as some
tools (idlac...) are meant for use on the build host.

Optional:
• A C++ compiler if you want to build the CORBA application personality (the OMG

IDL specification mandates that IDL source files be preprocessed according to standard
C++ preprocessing rules, and PolyORB relies on an external preprocessor provided by
a suitable C++ compiler to implement this).

• XML/Ada (http://libre.adacore.com/xmlada/) if you want to build the SOAP
protocol personality.

Note: per construction, the macro configure used to find your GNAT compiler looks first
to the executables gnatgcc, then adagcc and finally to gcc to find out which Ada compiler
to use. You should be very careful with your path and executables if you have multiple
GNAT versions installed. See below explanations on the ADA environment variable if you
need to override the default guess.

2.3 Build instructions

To compile and install PolyORB, execute:
% ./configure [some options]

% make (or gmake if your make is not GNU make)

% make install (ditto)

This will install files in standard locations. If you want to choose another prefix than
‘/usr/local’, give configure a ‘--prefix=whereveryouwant’ argument.

Note: at this time, you MUST use GNU make to compile this software.

http://libre.adacore.com/xmlada/

6 PolyORB User’s Guide

2.4 Additional instructions for cross platforms

The ‘RANLIB’ environment variable must be set to the path of the cross ‘ranlib’ prior to
running ‘configure’ with the appropriate --target option.

Only one PolyORB installation (native or cross) is currently possible with a given --
prefix. If both a native and a cross installation are needed on the same machine, distinct
prefixes must be used.

2.5 Building the documentation and PolyORB’s examples

PolyORB’s documentation and examples are built separately.

After building PolyORB, simply run make in the ‘examples’ (resp. ‘docs’) directory to
build the examples (resp. the documentation). The build process will only build examples
that correspond to the personalities you configured. Note that some examples require the
CORBA COS Naming service to be enabled (using --enable-corba-services="naming"
on the configure command line).

You may install PolyORB’s documentation in a standard location using make install.

2.5.1 Build Options

Available options for the ’configure’ script include:

• ‘--with-appli-perso="..."’: application personalities to build

Available personalities: AWS, CORBA, DSA, MOMA

e.g. ‘--with-appli-perso="corba moma"’ to build both the CORBA and MOMA
personalities

• ‘--with-proto-perso="..."’: personalities to build

Available personalities: GIOP, SOAP

e.g. ‘--with-proto-perso="giop soap"’ to build both the GIOP and SOAP person-
alities

• ‘--with-corba-services="..."’: CORBA COS services to build

Available services: event, ir, naming, notification, time

e.g. ‘--with-corba-services="event naming"’ to build only COS Event and COS
Naming.

By default, only the CORBA and GIOP personalities are built, no CORBA Services
are built.

• ‘--with-openssl’: build SSL support and SSL dependent features, including the
IIOP/SSLIOP personality

• ‘--help’: list all options available

• ‘--enable-shared’: build shared libraries.

• ‘--enable-debug’: enable debugging information generation and supplementary run-
time checks. Note that this option has a significant space and time cost, and is not
recommended for production use.

Chapter 2: Installation 7

2.5.2 Compiler, Tools and Run-Time libraries Options

The following environment variables can be used to override configure’s guess at what
compilers to use:
• CC: the C compiler
• ADA: the Ada 95 compiler (e.g. gcc, gnatgcc or adagcc)
• CXXCPP, CXXCPPFLAGS: the preprocessor used by idlac (only when setting up the

CORBA application personality). CORBA specifications require this preprocessor to
be compatible with the preprocessing rules defined in the C++ programming language
specifications.

For example, if you have two versions of GNAT installed and available in your PATH, and
configure picks the wrong one, you can indicate what compiler should be used with the
following syntax:

% ADA=/path/to/good/compiler/gcc ./configure [options]

PolyORB will be compiled with GNAT build host’s configuration, including run-time
library. You may override this setting using ADA_INCLUDE_PATH and ADA_OBJECTS_PATH
environment variables. See GNAT User’s Guide for more details.

You can add specific build options to GNAT using the EXTRA_GNATMAKE_FLAGS variable:
% EXTRA_GNATMAKE_FLAGS=--RTS=rts-sjlj ./configure [options]

You can also pass compiler-only flags using the ADAFLAGS variable.
NOTE: Developers building PolyORB from the version control repository who need to

rebuild the configure and Makefile.in files should use the script support/reconfig for this
purpose. This should be done after each update from the repository. In addition to the
requirements above, they will need autoconf 2.57 or newer, automake 1.6.3 or newer, and
libtool 1.5.8 or newer.

2.6 Platform notes

Solaris 2.8:
• /usr/bin/sed and /usr/ucb/sed will silently chop long lines, and /usr/xpg4/bin/sed

will enter an endless loop while processing PolyORB files. GNU sed is required to
configure and build PolyORB.

• /usr/ucb/tr does not handle control character escape sequences: it cannot be used to
recompute dependencies (’make depend’); /usr/bin/tr or /usr/xpg4/bin/tr must be
used.

Tru64 5.1A:
The default maximal data segment size may not be sufficient to compile PolyORB. If a

GNAT heap exhausted error message occurs during build, try raising this limit using:
ulimit -d unlimited

AIX 5.2:
PolyORB must be compiled with the -mminimal-toc compiler switch. This can be

achieved by setting the following values in the environment at configure time:
ADAFLAGS="-g -O2 -mminimal-toc"

CFLAGS="-g -O2 -mminimal-toc"

HP-UX 11.00:

8 PolyORB User’s Guide

The version of install(1) from /opt/imake/bin on HP-UX is not suitable for installing
PolyORB. Make sure that /opt/imake/bin is not on the PATH when building and installing
PolyORB.

Chapter 3: Overview of PolyORB personalities 9

3 Overview of PolyORB personalities

A personality is an instantiation of specific PolyORB components. It provides the mecha-
nisms specified by a distribution model, e.g. an API, a code generator or a protocol stack.

This section provides a brief overview of existing personalities.

Note: some of these personalities are available only through PolyORB’s repository.

3.1 Application personalities

Application personalities constitute the adaptation layer between application components
and middleware. They provide APIs and/or code generator to register application entities
with PolyORB’s core, and interoperate with the core to allow the exchange of requests with
remote entities.

3.1.1 CORBA

CORBA is OMG specification of a Distributed Object Computing (DOC) distribution
model ([OMG04]). It is now a well-known and well-established specification, used in a
wide range of industrial applications.

PolyORB provides a CORBA-compatible implementation based on mapping of the IDL
language version 1.2 described in [OMG01] and CORBA core specifications. PolyORB also
proposes an implementation of various additional specifications described by the OMG,
including COS Services : COS Naming, Notification, Event, Time, additional specifica-
tions; RT-CORBA, PortableInterceptors, DynamicAny.

3.1.2 Distributed System Annex of Ada (DSA)

The Distributed System Annex of Ada (DSA) [ISO95] is a normative specification part of
the language. It describes remote invocation schemes applied to most language constructs.

3.1.3 Message Oriented Middleware for Ada (MOMA)

MOMA (Message Oriented Middleware for Ada) provides message passing mechanisms. It
is an Ada adaptation of Sun’s Java Message Service (JMS) [SUN99], a standardized API
for common message passing models.

3.1.4 Ada Web Server (AWS)

The Web Server personality provides the same API as the Ada Web Server project (AWS)
[Obr03]. It allows for the implementation of web services, web server applications, or
classical web pages. AWS-based servers allow the programmer to directly interact with
incoming or outgoing HTTP and SOAP requests.

3.2 Protocol personalities

Protocol personalities handle the mapping of requests (representing interactions between
application entities) onto messages exchanged through a communication network, according
to a specific protocol.

10 PolyORB User’s Guide

3.2.1 GIOP

GIOP is the transport layer of the CORBA specifications. GIOP is a generic protocol. This
personality implements GIOP versions from 1.0 to 1.2 along with the CDR representation
scheme to map data types between the neutral core layer and CDR streams. It also provides
the following dedicated instances:
• IIOP supports synchronous request semantics over TCP/IP,
• IIOP/SSIOP supports synchronous request semantics using SSL sockets,
• MIOP instantiation of GIOP enables group communication over IP multicast,
• DIOP relies on UDP/IP communications to transmit one-way requests only.

3.2.2 SOAP

The SOAP protocol [W3C03] enables the exchange of structured and typed information
between peers. It is a self-describing XML document [W3C03] that defines both its data
and semantics. Basically, SOAP with HTTP bindings is used as a communication protocol
for Web Services.

Chapter 4: Building an application with PolyORB 11

4 Building an application with PolyORB

4.1 Compile-time configuration

The user may configure some elements of a PolyORB application at compile-time.

4.1.1 Tasking run-times

PolyORB provides different tasking run-times. The user may select the most appropri-
ate one, depending on its application requirements. The tasking run-times determine the
constructs PolyORB may use for its internal synchronizations.
• No_Tasking: There is no dependency on the Ada tasking run-time, middleware is

mono-task.
• Full_Tasking: Middleware uses Ada tasking constructs, middleware can be configured

for multi-tasking.
• Ravenscar : Middleware uses Ada tasking constructs, with the limitations of the

Ravenscar profile [DB98]. Middleware can be configured for multi-tasking.

See Chapter 5 [Tasking model in PolyORB], page 17 for more information on this point.

4.1.2 Middleware tasking policies

PolyORB provides several tasking policies. A tasking policy defines how tasks are used by
the middleware to process incoming requests.
• No_Tasking: There is only one task in middleware, processing all requests.
• Thread_Per_Session: One task monitors communication entities. One task is spawned

for each active connection. This task handles all incoming requests on this connection.
• Thread_Per_Request: One task monitors communication entities. One task is spawned

for each incoming requests.
• Thread_Pool: A set of tasks cooperate to handle all incoming requests.

See Chapter 5 [Tasking model in PolyORB], page 17 for more information on this point.

4.1.3 Sample files

PolyORB proposes a set of pre-defined setup packages. You must with one of them in your
application node to activate the corresponding setup.
• PolyORB.Setup.Client: a client node, without tasking enabled, configured to use all

protocol personalities build with PolyORB.
• PolyORB.Setup.Ravenscar_TP_Server: a server node, with tasking enabled, config-

ured to use all protocol personalities build with PolyORB. Middleware tasking runtime
follow Ravenscar’s profile restrictions. Middleware tasking policies is Thread_Pool.

• PolyORB.Setup.Thread_Per_Request_Server: a server node, with tasking enabled,
configured to use all protocol personalities build with PolyORB. Middleware tasking
policies is Thread_Per_Request.

• PolyORB.Setup.Thread_Per_Session_Server: a server node, with tasking enabled,
configured to use all protocol personalities build with PolyORB. Middleware tasking
policies is Thread_Per_Session.

12 PolyORB User’s Guide

• PolyORB.Setup.Thread_Pool_Server: a server node, with tasking enabled, configured
to use all protocol personalities build with PolyORB. Middleware tasking policies is
Thread_Pool.

To enforce one of these configurations, add a dependency on one of these packages. The
elaboration of the application (based on Ada rules) and the initialization of the partition
(based on the application personalities mechanisms) will set up properly your application.

4.2 Run-time configuration

The user may configure some elements of a PolyORB application at run-time.
Using the default configurations provided by PolyORB, the parameters are read in the

following order: command line, environment variables, configuration file. PolyORB will use
the first value that matches the searched parameter.

4.2.1 Using a configuration file

A configuration file may be used to configure a PolyORB node. A sample configuration file
may be found in ‘src/polyorb.conf’.

The syntax of the configuration file is:
• empty lines and lines that have a ’#’ in column 1 are ignored;
• sections can be started by lines of the form [SECTION-NAME ’]’;
• variable assignments can be performed by lines of the form VARIABLE-NAME ’=’ VALUE.

Any variable assignment is local to a section.
Assignments that occur before the first section declaration are relative to section [en-
vironment]. Section and variable names are case sensitive.
Furthermore, each time a resolved in that section value starts with "file:", the con-
tents of the file is used instead.

Default search path for ‘polyorb.conf’ is current directory. Environment variable
POLYORB_CONF may be used to set up information on configuration file.

PolyORB’s configuration file allows the user to
1. enable/disable the output of debug information
2. set up default reference on naming service
3. select the default protocol personality
4. set up each protocol personality

The configuration file is read once when running a node, during initialization.

4.2.2 Using environment variables

A variable Var.Iable in section [Sec] can be overridden by setting environment variable
"POLYORB_SEC_VAR_IABLE".

4.2.3 Using the command line

PolyORB allows to set up configuration variables on the command line. The syntax is close
to the one described in configuration files A variable Var.Iable in section [Sec] can be
overridden with flag --polyorb-<sec>-<var>-<iable>[=<value>].

Chapter 4: Building an application with PolyORB 13

4.3 Setting up protocol personalities

PolyORB allows the user to activate some of the available protocol personalities and to set
up preferred protocol. Protocol-specific parameters are defined in their respective sections.

4.3.1 Activating/Deactivating protocol personalities

Protocol activation is controlled by PolyORB’s configuration file.
The section [access_points] control the initialization of access points. An access point

is a node entry point that may serve incoming requests.
[access_points]

soap=enable

iiop=enable

diop=disable

uipmc=disable

This example activates SOAP and IIOP, deactivates DIOP and MIOP.
The section [modules] controls the activation/deactivation of some modules within

PolyORB. It is used to enable bindings to remote entities.
[modules]

binding_data.soap=enable

binding_data.iiop=enable

binding_data.diop=disable

binding_data.uipmc=disable

This example enables the creation of bindings to remote objects using SOAP or IIOP.
Objects cannot be reached using DIOP or UIPMC.

Note: by default, all configured personalities are activated.

4.3.2 Configuring protocol personality preferences

The user may affect a preference to each protocol personality. The protocol with the higher
preference will be selected among possible protocols to send a request to a remote node.

See polyorb.binding_data.<protocol>.preference in section [protocol] to set up
protocol’s preference.

Possible protocols are defined as the protocols available on the remote node, as advertised
in its object reference. IOR or corbaloc references may support multiple protocols, URI only
support one protocol.

Each protocol supports a variety of configuration parameters, please refer to the proto-
cols’ sections for more details.

4.4 Activating debug information

To activate the output of debug information, you must first configure and compile PolyORB
with debug activate, see help on --enable-debug flag in Chapter 2 [Installation], page 5.

To output debug information on a selected package, create a configuration file with a
[log] section and the name of the packages on which you want debug information:

Sample configuration file, output debug for PolyORB.A_Package

[log]

polyorb.a_package=debug

Note that some packages may not provide such information. See sample configuration file
the complete list of packages that provide debug.

14 PolyORB User’s Guide

4.5 Tracing exceptions

To trace exception propagation in PolyORB’s source code, it is necessary to:
1. compile PolyORB with debug activated,
2. activate debug information on package PolyORB.Exceptions.

4.6 polyorb-config

polyorb-config returns path and library information on PolyORB’s installation.

NAME

polyorb-config - script to get information about the installed version

of PolyORB.

SYNOPSIS

polyorb-config [--prefix[=DIR]] [--exec-prefix[=DIR]] [--version|-v]

[--config] [--libs] [--cflags] [--idls] [--help]

DESCRIPTION

polyorb-config is a tool that is used to determine the compiler and

linker flags that should be used to compile and link programs that use

PolyORB.

OPTIONS

polyorb-config accepts the following options:

--prefix[=DIR]

Output the directory in which PolyORB architecture-independent

files are installed, or set this directory to DIR.

--exec-prefix[=DIR]

Output the directory in which PolyORB architecture-dependent

files are installed, or set this directory to DIR.

--version

Print the currently installed version of PolyORB on the stan-

dard output.

--config

Print the configuration of the currently installed version of

PolyORB on the standard output.

--libs Print the linker flags that are necessary to link a PolyORB

program.

--cflags

Print the compiler flags that are necessary to compile a Poly-

ORB program.

--idls

Output flags to set up path to CORBA’s IDL for idlac.

--with-appli-perso=P,P,P

Restrict output to only those flags relevant to the listed

applicative personalities.

Chapter 4: Building an application with PolyORB 15

--with-proto-perso=P,P,P

Restrict output to only those flags relevant to the listed

protocol personalities.

--with-corba-services=S,S,S

Restrict output to only those flags relevant to the listed

services.

--help Print help message.

16 PolyORB User’s Guide

Chapter 5: Tasking model in PolyORB 17

5 Tasking model in PolyORB

5.1 PolyORB Tasking runtimes

PolyORB may use three different tasking runtimes to manage and synchronize tasks, if any.
Tasking runtimes capabilities are defined in the Ada reference manual [ISO95] and the next
revision of this standard (Ada0Y).

The choice of a specific tasking runtime is a compile-time parameter, Section 4.1.1 [Task-
ing run-times], page 11 for more details on their configuration.

5.1.1 Full tasking runtime

Full tasking runtime refers to configuration in which there are some dependencies on the
tasking constructs defined in chapter 9 of [ISO95]. It makes use of all capabilities defined
in this section to manage and synchronize tasks.

In this configuration, a PolyORB application must be compiled and linked with a tasking-
capable Ada runtime.

5.1.2 No tasking runtime

No tasking runtime refers to configuration in which there is no semantic dependency on
tasking constructs. Thus, no tasking is required.

In this configuration, a PolyORB application may be compiled and linked with a tasking-
capable Ada runtime or a no-tasking Ada runtime.

5.1.3 Ravenscar tasking runtime

Ravenscar tasking runtime refers to configuration in which tasking constructs are compliant
with the Ravenscar tasking restricted profile.

In this configuration, a PolyORB application may be compiled and linked with a tasking-
capable Ada runtime or a Ravenscar Ada runtime.

To configure tasking constructs used by PolyORB, one must instanciate the
PolyORB.Setup.Tasking.Ravenscar package to setup tasks and protected objects used
by PolyORB core.

--

-- --

-- POLYORB COMPONENTS --

-- --

-- P O L Y O R B . S E T U P . T A S K I N G . R A V E N S C A R --

-- --

-- S p e c --

-- --

-- Copyright (C) 2002-2004 Free Software Foundation, Inc. --

-- --

-- PolyORB is free software; you can redistribute it and/or modify it --

-- under terms of the GNU General Public License as published by the Free --

-- Software Foundation; either version 2, or (at your option) any later --

-- version. PolyORB is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

18 PolyORB User’s Guide

-- License for more details. You should have received a copy of the GNU --

-- General Public License distributed with PolyORB; see file COPYING. If --

-- not, write to the Free Software Foundation, 59 Temple Place - Suite 330, --

-- Boston, MA 02111-1307, USA. --

-- --

-- As a special exception, if other files instantiate generics from this --

-- unit, or you link this unit with other files to produce an executable, --

-- this unit does not by itself cause the resulting executable to be --

-- covered by the GNU General Public License. This exception does not --

-- however invalidate any other reasons why the executable file might be --

-- covered by the GNU Public License. --

-- --

-- PolyORB is maintained by ACT Europe. --

-- (email: sales@@act-europe.fr) --

-- --

--

-- You should instanciate this package to set up a ravenscar profile.

with System;

with PolyORB.Tasking.Profiles.Ravenscar.Threads.Annotations;

with PolyORB.Tasking.Profiles.Ravenscar.Threads;

with PolyORB.Tasking.Profiles.Ravenscar.Mutexes;

with PolyORB.Tasking.Profiles.Ravenscar.Condition_Variables;

generic
Number_Of_Application_Tasks : Integer;

-- Number of tasks created by the user.

Number_Of_System_Tasks : Integer;

-- Number of tasks created by the PolyORB run-time library.

Number_Of_Conditions : Integer;

-- Number of preallocated conditions.

Number_Of_Mutexes : Integer;

-- Number of preallocated mutexes.

Task_Priority : System.Priority;

-- Priority affected to the tasks of the pool.

Storage_Size : Natural;

-- Stack size of the system tasks.

package PolyORB.Setup.Tasking.Ravenscar is

package Threads_Package is
new PolyORB.Tasking.Profiles.Ravenscar.Threads

(Number_Of_Application_Tasks,

Number_Of_System_Tasks,

Task_Priority,

Storage_Size);

package Thread_Annotations_Package is new Threads_Package.Annotations;

package Conditions_Package is

Chapter 5: Tasking model in PolyORB 19

new PolyORB.Tasking.Profiles.Ravenscar.Condition_Variables

(Threads_Package,

Number_Of_Conditions);

package Mutexes_Package is
new PolyORB.Tasking.Profiles.Ravenscar.Mutexes

(Threads_Package,

Number_Of_Mutexes);

end PolyORB.Setup.Tasking.Ravenscar;

5.2 PolyORB ORB Tasking policies

PolyORB ORB Tasking policies control the creation of tasks to process all middleware
internal jobs, e.g. request processing, I/O monitoring.
Note: there is a dependency between ORB Tasking policies, and the run-time used

5.2.1 No Tasking

Under the No Tasking ORB policy, no task are created within the middleware instance: it
uses the environment task to process all jobs. Note that this policy is not thread-safe and
is compatible with the No tasking runtime only.

5.2.2 Thread Pool

Under the Thread Pool ORB policy, the middleware creates a pool of thread during the
initialization of PolyORB. This pool processes all jobs. The number of tasks in the thread
pool can be configured by three parameters in the [tasking] configuration section.
• min_spare_threads indicates the number of tasks created at startup.
• max_spare_threads is a ceiling. When a remote subprogram call is completed, its

anonymous task is deallocated if the number of tasks already in the pool is greater
than the ceiling. If not, then the task is queued in the pool.

• max_threads indicates the maximum number of tasks in the pool.

See Section 5.3 [PolyORB Tasking configuration], page 19, for more information on how
to configure the number of tasks in the thread pool.

5.2.3 Thread Per Session

Under the Thread Per Session ORB policy, the middleware creates one task when a new
session (one active connection) is opened. The task is finalized when the session is closed.

5.2.4 Thread Per Request

Under the Thread Per Request ORB policy, the middleware creates one task per incoming
request. The task is finalized when the request is completed.

5.3 PolyORB Tasking configuration

The following parameters allow the user to set up some of the tasking parameters.

###

20 PolyORB User’s Guide

Parameters for tasking

#

[tasking]

Default storage size for all threads spawned by PolyORB

#storage_size=262144

Number of threads by Thread Pool tasking policy

#min_spare_threads=4

#max_spare_threads=4

#max_threads=4

5.4 PolyORB ORB Controller policies

The PolyORB ORB Controller policies are responsible for the management of the global
state of the middleware: they assign middleware internal jobs, or I/Os monitoring to mid-
dleware tasks.

ORB Controller policies grant access to middleware internals and affect one action for
each middleware task. They ensure that all tasks work concurrently in a thread-safe manner.

5.4.1 No Tasking

The No Tasking ORB Controller policy is dedicated to no tasking middleware configurations;
the middleware task executes the following loop: process internal jobs, then monitor I/Os.

5.4.2 Workers

The Workers ORB Controller policy is a simple controller policy: all tasks are equal, they
may alternatively and randomly process requests or wait for I/O sources.

Note: it is the default configuration provided by PolyORB sample setup files, See Sec-
tion 4.1.3 [Sample files], page 11.

5.4.3 Half Sync/Half Async

The Half Sync/Half Async ORB Controller policy implements the “Half Sync/Half Async”
design pattern: it discriminates between one thread dedicated to I/O monitoring that queue
middleware jobs; another pool of threads dequeue jobs and process them.

Note: this pattern is well-suited to process computation-intensive requests.

5.4.4 Leader/Followers

The Leader/Followers ORB Controller policy implements the “Leader/Followers ” design
pattern: multiple tasks take turns to monitor I/O sources and then process requests that
occur on the event sources.

Note: this pattern is adapted to process a lot of light requests.

5.5 PolyORB ORB Controller configuration

The following parameters allow the user to set up parameters for ORB Controllers.

###

Parameters for ORB Controllers

Chapter 5: Tasking model in PolyORB 21

#

[orb_controller]

Interval between two polling actions on one monitor

#polyorb.orb_controller.polling_interval=0

Timeout when polling on one monitor

#polyorb.orb_controller.polling_timeout=0

22 PolyORB User’s Guide

Chapter 6: CORBA 23

6 CORBA

6.1 What you should know before Reading this section

This section assumes that the reader is familiar with the CORBA specifications described
in [OMG04] and the IDL-to-Ada mapping defined in [OMG01].

6.2 Installing CORBA application personality

Ensure PolyORB has been configured and then compiled with CORBA application person-
ality. See Chapter 4 [Building an application with PolyORB], page 11 for more details on
how to check installed personalities.

To build the CORBA application personality, see Chapter 2 [Installation], page 5.

6.3 Usage of idlac

idlac is PolyORB’s IDL-to-Ada 95 compiler.

NAME

idlac - PolyORB’s IDL-to-Ada compiler

SYNOPSIS

idlac [-Edikpqv] [-[no]ir] [-gnatW8] [-o DIR] idl_file [-cppargs ...]

DESCRIPTION

idlac is an IDL-to-Ada compiler, compliant with version 1.2 of the "Ada

Language Mapping Specification" produced by the OMG.

OPTIONS

idlac accepts the following options:

-E Preprocess only.

-d Generate delegation package.

-i Generate implementation template.

-s Generate server side code.

-c Generate client side code.

-k Keep temporary files.

-p Produce source on standard output.

-q Be quiet (default).

-v Be verbose.

-ir Generate code for interface repository.

-noir Don’t generate code for interface repository (default).

-gnatW8

24 PolyORB User’s Guide

Use UTF8 character encoding

-o DIR Specify output directory

-cppargs ARGS

Pass ARGS to the C++ preprocessor.

-I dir Shortcut for -cppargs -I dir.

EXIT STATUS

idlac returns one of the following values upon exit:

0 Successful completion

1 Usage error

2 Illegal IDL specification

idlac creates several files :

• myinterface.ads, myinterface.adb : these files contain the mapping for user defined
types (client and server side).

• myinterface-impl.ads, myinterface-impl.adb : these files are to be filled by the
user. They contain the implementation of the server. They are generated only if the -i
flag is specified.

• myinterface.ads, myinterface.adb : these files contain the client stubs for the in-
terface.

• myinterface-skel.ads, myinterface-skel.adb : these files contain the server-side
skeletons for the interface.

• myinterface-helper.ads, myinterface-helper.adb : these files contain subpro-
grams to marshal data into CORBA Any containers.

• myinterface-ir_info.ads, myinterface-ir_info.adb : these files contain code for
registering IDL definitions in the CORBA Interface Repository. They are generated
only if the ’-ir’ flag is specified.

6.4 Resolving names in a CORBA application

PolyORB implements the CORBA COS Naming service.

6.4.1 po_cos_naming

po_cos_naming is a stand alone server that supports CORBA COS Naming specification.
When launched, it returns its IOR and corbaloc that can then be used by other CORBA
applications.

If you want po_cos_naming to return the same IOR or corbaloc at each startup, you
must set a default listen port for the protocol personalities you use. See Section 4.3.2
[Configuring protocol personality preferences], page 13 for more details.

po_cos_naming can output its IOR directly to a file using the -file <filename> flag.
This, in conjonction with the ’file://’ naming scheme provided by CORBA, proposes a
convenient way to store initial references to the Naming Service.

Chapter 6: CORBA 25

Usage: po_cos_naming

-file <filename> : output COS Naming IOR to ’filename’

-help : print this help

[PolyORB command line configuration variables]

6.4.2 Registering the reference to the COS Naming server

You have two ways to register the reference to the root context of the COS Naming server
the application will use:

• Setting up the name_service entry in the [corba] section in your configuration file,
name_service is the IOR or corbaloc of the COS Naming server to use. See Sec-
tion 4.2.1 [Using a configuration file], page 12 for more details.

• Registering an initial reference using the -ORB InitRef NamingService=<IOR> or -
ORB InitRef NamingService=<corbaloc> command-line argument. See the CORBA
specifications for more details.

• Registering an initial reference for NamingService using the CORBA.ORB.Register_
Initial_Reference function. See the CORBA specifications for more details.

6.4.3 Using the COS Naming

PolyORB provides a helper package to manipulate the COS Naming in your applications.
See Section 6.9 [PolyORB specific APIs], page 37 for more details.

6.5 The CORBA Interface Repository

PolyORB implements the CORBA Interface Repository.

6.5.1 po_ir

po_ir is a stand alone server that supports the CORBA Interface Repository. When
launched, it returns its IOR and corbaloc that can then be used by other CORBA ap-
plications.

If you want po_ir to return the same IOR or corbaloc at each startup, you must set
a default listen port for the protocol personalities you use. See Section 4.3.2 [Configuring
protocol personality preferences], page 13 for more details.

6.5.2 Using the Interface Repository

idlac generates a helper package that allows you to register all entities defined in your IDL
specification in the Interface Repository.

6.6 Building a CORBA application with PolyORB

6.6.1 echo example

We consider building a simple “Echo” CORBA server and client. This application echoes
a string. The source code for this example is located in ‘examples/corba/echo’ directory
in PolyORB distribution. This applications uses only basic elements of CORBA.

To build this application, you need the following pieces of code:

1. IDL definition of an echo object

26 PolyORB User’s Guide

2. Implementation code for the echo object
3. Code for client and server nodes

6.6.1.1 IDL definition of an echo object

This interface defines an echo object with a unique method echoString. Per construction,
this method returns its argument.� �

interface Echo {

string echoString (in string Mesg);

};
 	
6.6.1.2 Implementation code for the echo object

Package Echo.Impl is an implementation of this interface. This implementation follows the
IDL-to-Ada mapping.

--

-- --

-- POLYORB COMPONENTS --

-- --

-- E C H O . I M P L --

-- --

-- S p e c --

-- --

-- Copyright (C) 2002 Free Software Foundation, Inc. --

-- --

-- PolyORB is free software; you can redistribute it and/or modify it --

-- under terms of the GNU General Public License as published by the Free --

-- Software Foundation; either version 2, or (at your option) any later --

-- version. PolyORB is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. You should have received a copy of the GNU --

-- General Public License distributed with PolyORB; see file COPYING. If --

-- not, write to the Free Software Foundation, 59 Temple Place - Suite 330, --

-- Boston, MA 02111-1307, USA. --

-- --

-- As a special exception, if other files instantiate generics from this --

-- unit, or you link this unit with other files to produce an executable, --

-- this unit does not by itself cause the resulting executable to be --

-- covered by the GNU General Public License. This exception does not --

-- however invalidate any other reasons why the executable file might be --

-- covered by the GNU Public License. --

-- --

-- PolyORB is maintained by ACT Europe. --

-- (email: sales@@act-europe.fr) --

-- --

--

with CORBA;

with PortableServer;

package Echo.Impl is

Chapter 6: CORBA 27

-- My own implementation of echo object.

-- This is simply used to define the operations.

type Object is new PortableServer.Servant_Base with null record;

type Object_Acc is access Object;

function EchoString

(Self : access Object;

Mesg : in CORBA.String)

return CORBA.String;

end Echo.Impl;

--

-- --

-- POLYORB COMPONENTS --

-- --

-- E C H O . I M P L --

-- --

-- B o d y --

-- --

-- Copyright (C) 2002 Free Software Foundation, Inc. --

-- --

-- PolyORB is free software; you can redistribute it and/or modify it --

-- under terms of the GNU General Public License as published by the Free --

-- Software Foundation; either version 2, or (at your option) any later --

-- version. PolyORB is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. You should have received a copy of the GNU --

-- General Public License distributed with PolyORB; see file COPYING. If --

-- not, write to the Free Software Foundation, 59 Temple Place - Suite 330, --

-- Boston, MA 02111-1307, USA. --

-- --

-- As a special exception, if other files instantiate generics from this --

-- unit, or you link this unit with other files to produce an executable, --

-- this unit does not by itself cause the resulting executable to be --

-- covered by the GNU General Public License. This exception does not --

-- however invalidate any other reasons why the executable file might be --

-- covered by the GNU Public License. --

-- --

-- PolyORB is maintained by ACT Europe. --

-- (email: sales@@act-europe.fr) --

-- --

--

with Ada.Text_IO;

with Echo.Skel;

pragma Warnings (Off, Echo.Skel);

-- No entity from Echo.Skel is referenced.

package body Echo.Impl is

-- EchoString --

28 PolyORB User’s Guide

function EchoString

(Self : access Object;

Mesg : in CORBA.String)

return CORBA.String

is
pragma Warnings (Off);

pragma Unreferenced (Self);

pragma Warnings (On);

begin
Ada.Text_IO.Put_Line

("Echoing string: " & CORBA.To_Standard_String (Mesg)

& " ");

return Mesg;

end EchoString;

end Echo.Impl;

Note: Echo.Impl body requires a dependency on Echo.Skel to ensure the elaboration of
skeleton code and the correct setup of PolyORB’s internals.

6.6.1.3 Test code for client and server nodes

Client and server code demonstrate how to make a remote invocation on a CORBA object,
and how to setup an object on a server node.

Note: the dependency on PolyORB.Setup.Client or PolyORB.Setup.No_Tasking_
Server enforces compile-time configuration, see Section 4.1.3 [Sample files], page 11.
• Client code tests a simple remote invocation on object. It is a no tasking client.

Reference to object is built from stringified reference (or IOR), which is passed through
command line.

--

-- --

-- POLYORB COMPONENTS --

-- --

-- C L I E N T --

-- --

-- B o d y --

-- --

-- Copyright (C) 2002-2004 Free Software Foundation, Inc. --

-- --

-- PolyORB is free software; you can redistribute it and/or modify it --

-- under terms of the GNU General Public License as published by the Free --

-- Software Foundation; either version 2, or (at your option) any later --

-- version. PolyORB is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. You should have received a copy of the GNU --

-- General Public License distributed with PolyORB; see file COPYING. If --

-- not, write to the Free Software Foundation, 59 Temple Place - Suite 330, --

-- Boston, MA 02111-1307, USA. --

-- --

-- As a special exception, if other files instantiate generics from this --

-- unit, or you link this unit with other files to produce an executable, --

-- this unit does not by itself cause the resulting executable to be --

Chapter 6: CORBA 29

-- covered by the GNU General Public License. This exception does not --

-- however invalidate any other reasons why the executable file might be --

-- covered by the GNU Public License. --

-- --

-- PolyORB is maintained by ACT Europe. --

-- (email: sales@@act-europe.fr) --

-- --

--

-- echo client.

with Ada.Command_Line;

with Ada.Text_IO;

with CORBA.ORB;

with Echo;

with PolyORB.Setup.Client;

pragma Warnings (Off, PolyORB.Setup.Client);

with PolyORB.Utils.Report;

procedure Client is
use Ada.Command_Line;

use Ada.Text_IO;

use PolyORB.Utils.Report;

Sent_Msg, Rcvd_Msg : CORBA.String;

myecho : Echo.Ref;

begin
New_Test ("Echo client");

CORBA.ORB.Initialize ("ORB");

if Argument_Count /= 1 then

Put_Line ("usage : client <IOR_string_from_server>|-i");

return;
end if;

-- Getting the CORBA.Object

CORBA.ORB.String_To_Object

(CORBA.To_CORBA_String (Ada.Command_Line.Argument (1)), myecho);

-- Checking if it worked

if Echo.Is_Nil (myecho) then

Put_Line ("main : cannot invoke on a nil reference");

return;
end if;

-- Sending message

Sent_Msg := CORBA.To_CORBA_String (Standard.String’("Hello Ada !"));

Rcvd_Msg := Echo.echoString (myecho, Sent_Msg);

-- Printing result

30 PolyORB User’s Guide

Put_Line ("I said : " & CORBA.To_Standard_String (Sent_Msg));

Put_Line ("The object answered : " & CORBA.To_Standard_String (Rcvd_Msg));

End_Report;

exception
when E : CORBA.Transient =>

declare

Memb : CORBA.System_Exception_Members;

begin
CORBA.Get_Members (E, Memb);

Put ("received exception transient, minor");

Put (CORBA.Unsigned_Long’Image (Memb.Minor));

Put (", completion status: ");

Put_Line (CORBA.Completion_Status’Image (Memb.Completed));

End_Report;

end;
end Client;

• Server code setups a no tasking node. Object is registered to the RootPOA. Then an
IOR reference is built to enable interaction with other nodes.

--

-- --

-- POLYORB COMPONENTS --

-- --

-- S E R V E R --

-- --

-- B o d y --

-- --

-- Copyright (C) 2002-2007, Free Software Foundation, Inc. --

-- --

-- PolyORB is free software; you can redistribute it and/or modify it --

-- under terms of the GNU General Public License as published by the Free --

-- Software Foundation; either version 2, or (at your option) any later --

-- version. PolyORB is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. You should have received a copy of the GNU --

-- General Public License distributed with PolyORB; see file COPYING. If --

-- not, write to the Free Software Foundation, 51 Franklin Street, Fifth --

-- Floor, Boston, MA 02111-1301, USA. --

-- --

-- As a special exception, if other files instantiate generics from this --

-- unit, or you link this unit with other files to produce an executable, --

-- this unit does not by itself cause the resulting executable to be --

-- covered by the GNU General Public License. This exception does not --

-- however invalidate any other reasons why the executable file might be --

-- covered by the GNU Public License. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@@adacore.com) --

-- --

--

with Ada.Text_IO;

Chapter 6: CORBA 31

with CORBA.Impl;

with CORBA.Object;

with CORBA.ORB;

with PortableServer.POA.Helper;

with PortableServer.POAManager;

with Echo.Impl;

with PolyORB.CORBA_P.CORBALOC;

-- Setup server node: use no tasking default configuration

with PolyORB.Setup.No_Tasking_Server;

pragma Warnings (Off, PolyORB.Setup.No_Tasking_Server);

procedure Server is
begin

declare

Argv : CORBA.ORB.Arg_List := CORBA.ORB.Command_Line_Arguments;

begin
CORBA.ORB.Init (CORBA.ORB.To_CORBA_String ("ORB"), Argv);

declare

Root_POA : PortableServer.POA.Local_Ref;

Ref : CORBA.Object.Ref;

Obj : constant CORBA.Impl.Object_Ptr := new Echo.Impl.Object;

begin

-- Retrieve Root POA

Root_POA := PortableServer.POA.Helper.To_Local_Ref

(CORBA.ORB.Resolve_Initial_References

(CORBA.ORB.To_CORBA_String ("RootPOA")));

PortableServer.POAManager.Activate

(PortableServer.POA.Get_The_POAManager (Root_POA));

-- Set up new object

Ref := PortableServer.POA.Servant_To_Reference

(Root_POA, PortableServer.Servant (Obj));

-- Output IOR

Ada.Text_IO.Put_Line

("’"

& CORBA.To_Standard_String (CORBA.Object.Object_To_String (Ref))

& "’");

Ada.Text_IO.New_Line;

-- Output corbaloc

32 PolyORB User’s Guide

Ada.Text_IO.Put_Line

("’"

& CORBA.To_Standard_String

(PolyORB.CORBA_P.CORBALOC.Object_To_Corbaloc (Ref))

& "’");

-- Launch the server

CORBA.ORB.Run;

end;
end;

end Server;

6.6.1.4 Compilation and execution

To compile this demo,
1. Process the IDL file with idlac

$ idlac echo.idl

2. Compile the client node
$ gnatmake client.adb ‘polyorb-config‘

3. Compile the server node
$ gnatmake server.adb ‘polyorb-config‘

Note the use of backticks (‘). This means that polyorb-config is first executed, and then
the command line is replaced with the output of the script, setting up library and include
paths and library names.

To run this demo:
• run ‘server’, the server outputs its IOR, an hexadecimal string with the <IOR:> prefix.

$./server

Loading configuration from polyorb.conf

No polyorb.conf configuration file.

’IOR:01534f410d00000049444c3[..]’

• run ‘client’, passing the complete IOR on the command line
$./client ’IOR:01534f410d00000049444c3[..]’

Echoing string: Hello Ada !

I said : Hello Ada !

The object answered : Hello Ada !

6.6.2 Other examples

PolyORB proposes other examples to test other CORBA features. These examples are
located in ‘example/corba’ directory in PolyORB distribution.

• ‘all_functions’ tests CORBA parameters passing mode (in, out, ..);

• ‘all_types’ tests CORBA types;

• ‘echo’ is a simple CORBA demo;

• ‘random’ is a random number generator;

• ‘send’ tests MIOP specific API.

Chapter 6: CORBA 33

6.7 Configuring a CORBA application

To configure a CORBA application, you need to separately configure PolyORB and the
GIOP protocol (or any other protocol personality you wish to use).

6.7.1 Configuring PolyORB

Please, refer to Chapter 4 [Building an application with PolyORB], page 11 for more infor-
mation on PolyORB’s configuration.

6.7.2 Configuring GIOP protocol stack for PolyORB

The GIOP protocol is separated from the CORBA application personality. See Section 11.3
[Configuring the GIOP personality], page 57 for more information on GIOP’s configuration.

6.7.3 Configuring Security services for PolyORB

PolyORB provides support for some elements of the CORBA Security mechanisms. This
sections lists the corresponding configuration parameters.

6.7.3.1 Supported mechasnisms

PolyORB provides support for the following security mechanisms:
1. SSL/TLS protected transport;
2. GSSUP (user/password) authentication mechanism;
3. identity assertion and backward trust evaluation.

6.7.3.2 Compile-time configuration

To enable security support applications must "with" one of the predefined setup packages:
1. PolyORB.Setup.Secure_Client - for client side support only;
2. PolyORB.Setup.Secure_Server - for both client and server side support.

6.7.3.3 Run-time configuration

1. Capsule configuration
This section details the configuration parameters for capsule configuration.

[security_manager]

List of sections for configure client’s credentials

#own_credentials=my_credentials

#

Client requires integrity proteced messages

#integrity_required=true

#

Client requires confiodentiality protected messages

#confidentiality_required=true

#

Client requires security association to detect replay (not supported

for now)

#detect_replay_required=true

#

Client requires security association to detect message sequence

errors (not

supported for now)

#detect_misordering_required=true

34 PolyORB User’s Guide

#

Client requires target authentication

#establish_trust_in_target_required=true

#

Client requires client authentication (usually not applicable at

all)

#establish_trust_in_client_required=true

#

(rare useful)

#identity_assertion_required=true

#

(rare useful)

#delegation_by_client_required=true

2. Credentials configuration

This section details configuration parameters for defining program’s credentials. De-
pending on used mechanisms for transport and authentication layers, credentials con-
figuration section may define configuration only for one transport mechanism and/or
one authentication mechanism.

#[my_credentials]

#

TLS protected transport mechanism used as transport mechanism

#transport_credentials_type=tls

#

Connection method. Available methods: tls1, ssl3, ssl2

#tls.method=tls1

#

Certificate file name

#tls.certificate_file=my.crt

#

Certificate chain file name

#tls.certificate_chain_file=

#

Private key file name

#tls.private_key_file=my.key

#

Name of file, at which CA certificates for verification purposes are

#located

#tls.certificate_authority_file=root.crt

#

Name of directory, at which CA certificates for verification

#purposes are

located

#tls.certificate_authority_path=

#

List of available ciphers

#tls.ciphers=ALL

#

Verify peer certificate

#tls.verify_peer=true

#

Fail if client don’t provide ceritificate (server only)

#tls.verify_fail_if_no_peer_certificate=true

#

GSSUP (user/password) mechanism as authentication mechanism

#authentication_credentials_type=gssup

#

Chapter 6: CORBA 35

User name

#gssup.username=username@domain

#

User password

#gssup.password=password

#

Target name for which user/password pair is applicable

#gssup.target_name=@domain

3. POA configuration

This section details configuration parameters for defining security characteristics of
objects managed by POA. POA’s name is used as section name.

#[MySecurePOA]

#

Unprotected invocations is allowed

#unprotected_invocation_allowed=true

#

Section name for configuration of used protected transport mechanism

#(if any)

#transport_mechanism=tlsiop

#

Section name for configuration of used authentication mechanism (if

#any)

#authentication_mechanism=my_gssup

#

Target require client authentication at authentication layer (in

#addition

to authentication at transport layer)

#authentication_required=true

#

Name of file for backward trust evalutation rules

#backward_trust_rules_file=file.btr

#

Section name for configuration of authorization tokens authority

#privilege_authorities=

4. TLS protected transport mechanism configuration

This section details configuration parameters for the TLS protected transport mecha-
nism. Section name for mechanism configuration is defined in POA configuration.

[tlsiop]

List of access points

#addresses=127.0.0.1:3456

5. GSSUP authentication mechanism

This section details configuration parameters for the GSSUP auithentication mecha-
nism. Section name for mechanism configuration defined in POA configuration.

#[my_gssup]

#

Authentication mechanism

#mechanism=gssup

#

Target name

#gssup.target_name=@domain

#

User name/password mapping file

#gssup.passwd_file=passwd.pwd

36 PolyORB User’s Guide

6.7.4 Command line arguments

The CORBA specifications define a mechanism to pass command line arguments to your
application, using the CORBA::ORB:Init method.

For now, PolyORB supports the following list of arguments:
• InitRef to pass initial reference.

6.8 Implementation Notes

PolyORB strives to support CORBA specifications as closely as possible. However, in rare
occasions, the implementation adapts the specifications to actually enable its completion.
This section provides information on the various modification we made.

6.8.1 Tasking

PolyORB provides support for tasking and no-tasking, using configuration parameters.
Please, refer to Chapter 4 [Building an application with PolyORB], page 11 for more infor-
mation on PolyORB’s configuration.

When selecting a tasking-capable runtime, ORB-related functions are thread safe, fol-
lowing the IDL-to-Ada mapping recommendations.

6.8.2 Implementation of CORBA specifications

In some occasions, the CORBA specifications do not describe the semantics of the interface
with sufficient details. We add an Implementation Notes tag in the package specification
to indicate the modifications or enhancements we made to the standard.

In some occasions, the IDL-to-Ada mapping specifications and the CORBA specifications
conflict. We add an Implementation Notes tag in the package specification to indicate this
issue. Whenever possible, PolyORB follows the CORBA specifications.

6.8.3 Additions to the CORBA specifications

In some occasions, the specifications lack feature that may be useful. We add an
Implementation Notes tag in the package specification to detail the additions we made to
the standard.

Besides, PolyORB follows some of the recommendations derived from the OMG Issues for
Ada 2003 Revision Task Force mailing list (see http://www.omg.org/issues/ada-rtf.html
for more information).

6.8.4 Interface repository

The documentation of the PolyORB’s CORBA Interface Repository will appear in a future
revision of PolyORB.

6.8.5 Policy Domain Managers

You have two ways to register the reference to the CORBA Policy Domain Manager the
application will use:
• Setting up the policy_domaing_manager entry in the [corba] section in your con-

figuration file, policy_domaing_manager is the IOR or corbaloc of the COS Naming
server to use. See Section 4.2.1 [Using a configuration file], page 12 for more details.

http://www.omg.org/issues/ada-rtf.html

Chapter 6: CORBA 37

• Registering an initial reference using the -ORB InitRef PolyORBPolicyDomainManager=<IOR>
or -ORB InitRef PolyORBPolicyDomainManager=<corbaloc> command-line argu-
ment. See the CORBA specifications for more details.

• Registering an initial reference for PolyORBPolicyDomainManager using the
CORBA.ORB.Register_Initial_Reference function. See the CORBA specifications
for more details.

6.8.6 Mapping of exceptions

For each exception defined in the CORBA specifications, PolyORB provides the Raise_
<excp_name> function, a utility function that raises the exception <excp_name>, along with
its exception member. PolyORB also defines the Get_Members function (as defined in the
IDL-to-Ada mapping) to provide accessors to retrieve information on the exception.

In addition, for each exception defined in a user-defined IDL specification, ‘idlac’ will
generate a Raise_<excp_name> function in the Helper package. It is a utility function that
raises the exception <excp_name>, along with its exception member.

6.8.7 Additional information to CORBA::Unknown

When a CORBA application raises an Ada exception that is not part of the IDL specifi-
cations, or defined by the CORBA specifications, then this exception is translated into a
CORBA::UNKNOWN exception.

To help debugging CORBA applications, PolyORB supports a specific service context to
the GIOP protocol personality that conveys exception information. When displaying excep-
tion information, server-side specific exception information are delimited by “<Invocation
Exception Info: ..>”

Here is an example from the all_types example provided by PolyORB.
Exception name: CORBA.UNKNOWN

Message: 4F4D0001M

<Invocation Exception Info: Exception name: CONSTRAINT_ERROR

Message: all_types-impl.adb:315 explicit raise

Call stack traceback locations:

0x84d279c 0x84c1e78 0x84b92c6 0x84b8e9>

Call stack traceback locations:

0x81d0425 0x81d0554 0x81d6d8c 0x81fd02b 0x81fc091 0x82eea12 0x83e4c22 0x807b69a 0xb7a15e3e

6.8.8 Internals packages

PolyORB sometimes declare internals types and routines inside CORBA packages. In this
case, these entities are gathered into an Internals child package. You should not use these
functions: they are not portable, and may be changed in future releases.

6.9 PolyORB’s specific APIs

PolyORB defines packages to help in the development of CORBA programs.
• Section 6.9.1 [PolyORB.CORBA P.CORBALOC], page 39:

This package defines a helper function to build a corbaloc stringified reference from a
CORBA object reference.

• Section 6.9.2 [PolyORB.CORBA P.Naming Tools], page 40:
This package defines helper functions to ease interaction with CORBA COS Naming.

38 PolyORB User’s Guide

• Section 6.9.3 [PolyORB.CORBA P.Server Tools], page 42:
This package defines helper functions to ease set up of a simple CORBA Server.

Chapter 6: CORBA 39

6.9.1 PolyORB.CORBA_P.CORBALOC

--

-- --

-- POLYORB COMPONENTS --

-- --

-- P O L Y O R B . C O R B A _ P . C O R B A L O C --

-- --

-- S p e c --

-- --

-- Copyright (C) 2004-2006, Free Software Foundation, Inc. --

-- --

-- PolyORB is free software; you can redistribute it and/or modify it --

-- under terms of the GNU General Public License as published by the Free --

-- Software Foundation; either version 2, or (at your option) any later --

-- version. PolyORB is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. You should have received a copy of the GNU --

-- General Public License distributed with PolyORB; see file COPYING. If --

-- not, write to the Free Software Foundation, 51 Franklin Street, Fifth --

-- Floor, Boston, MA 02111-1301, USA. --

-- --

-- As a special exception, if other files instantiate generics from this --

-- unit, or you link this unit with other files to produce an executable, --

-- this unit does not by itself cause the resulting executable to be --

-- covered by the GNU General Public License. This exception does not --

-- however invalidate any other reasons why the executable file might be --

-- covered by the GNU Public License. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@@adacore.com) --

-- --

--

-- Helper functions to manage CORBA corbaloc references

with CORBA.Object;

package PolyORB.CORBA_P.CORBALOC is

function Object_To_Corbaloc

(Obj : CORBA.Object.Ref’Class)

return CORBA.String;

-- Convert reference to corbaloc, return corbaloc of best profile

end PolyORB.CORBA_P.CORBALOC;

40 PolyORB User’s Guide

6.9.2 PolyORB.CORBA_P.Naming_Tools

--

-- --

-- POLYORB COMPONENTS --

-- --

-- P O L Y O R B . C O R B A _ P . N A M I N G _ T O O L S --

-- --

-- S p e c --

-- --

-- Copyright (C) 2001-2007, Free Software Foundation, Inc. --

-- --

-- PolyORB is free software; you can redistribute it and/or modify it --

-- under terms of the GNU General Public License as published by the Free --

-- Software Foundation; either version 2, or (at your option) any later --

-- version. PolyORB is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. You should have received a copy of the GNU --

-- General Public License distributed with PolyORB; see file COPYING. If --

-- not, write to the Free Software Foundation, 51 Franklin Street, Fifth --

-- Floor, Boston, MA 02111-1301, USA. --

-- --

-- As a special exception, if other files instantiate generics from this --

-- unit, or you link this unit with other files to produce an executable, --

-- this unit does not by itself cause the resulting executable to be --

-- covered by the GNU General Public License. This exception does not --

-- however invalidate any other reasons why the executable file might be --

-- covered by the GNU Public License. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@@adacore.com) --

-- --

--

-- Wrappers for the COS Naming service to facilitate retrievel of object

-- references by IOR or by name.

with Ada.Finalization;

with CORBA.Object;

with CosNaming.NamingContext;

package PolyORB.CORBA_P.Naming_Tools is

function Locate (Name : CosNaming.Name) return CORBA.Object.Ref;

function Locate

(Context : CosNaming.NamingContext.Ref;

Name : CosNaming.Name) return CORBA.Object.Ref;

-- Locate an object given its name, given as an array of name components.

function Locate

(IOR_Or_Name : String; Sep : Character := ’/’) return CORBA.Object.Ref;

function Locate

(Context : CosNaming.NamingContext.Ref;

IOR_Or_Name : String;

Chapter 6: CORBA 41

Sep : Character := ’/’) return CORBA.Object.Ref;

-- Locate an object by IOR or name. If the string does not start with

-- "IOR:", the name will be parsed before it is looked up, using

-- Parse_Name below.

procedure Register

(Name : String;

Ref : CORBA.Object.Ref;

Rebind : Boolean := False;

Sep : Character := ’/’);

-- Register an object by its name by binding or rebinding.

-- The name will be parsed by Parse_Name below; any necessary contexts

-- will be created on the name server.

-- If Rebind is True, then a rebind will be performed if the name

-- is already bound.

procedure Unregister (Name : in String);

-- Unregister an object by its name by unbinding it

type Server_Guard is limited private;
procedure Register

(Guard : in out Server_Guard;

Name : String;

Ref : CORBA.Object.Ref;

Rebind : Boolean := False;

Sep : Character := ’/’);

-- A Server_Guard object is an object which is able to register a server

-- reference in a naming service (see Register above), and destroy this

-- name using Unregister when the object disappears (the program terminates

-- or the Server_Guard object lifetime has expired).

function Parse_Name

(Name : String;

Sep : Character := ’/’) return CosNaming.Name;

-- Split a sequence of name component specifications separated with Sep

-- characters into a name component array. Any leading Sep is ignored.

private
-- implementation removed

end PolyORB.CORBA_P.Naming_Tools;

42 PolyORB User’s Guide

6.9.3 PolyORB.CORBA_P.Server_Tools

--

-- --

-- POLYORB COMPONENTS --

-- --

-- P O L Y O R B . C O R B A _ P . S E R V E R _ T O O L S --

-- --

-- S p e c --

-- --

-- Copyright (C) 2001-2006, Free Software Foundation, Inc. --

-- --

-- PolyORB is free software; you can redistribute it and/or modify it --

-- under terms of the GNU General Public License as published by the Free --

-- Software Foundation; either version 2, or (at your option) any later --

-- version. PolyORB is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. You should have received a copy of the GNU --

-- General Public License distributed with PolyORB; see file COPYING. If --

-- not, write to the Free Software Foundation, 51 Franklin Street, Fifth --

-- Floor, Boston, MA 02111-1301, USA. --

-- --

-- As a special exception, if other files instantiate generics from this --

-- unit, or you link this unit with other files to produce an executable, --

-- this unit does not by itself cause the resulting executable to be --

-- covered by the GNU General Public License. This exception does not --

-- however invalidate any other reasons why the executable file might be --

-- covered by the GNU Public License. --

-- --

-- PolyORB is maintained by AdaCore --

-- (email: sales@@adacore.com) --

-- --

--

-- Helper functions for CORBA servers. Note that using this unit implies

-- using the Portable Object Adapter.

with CORBA.Object;

with PortableServer.POA;

package PolyORB.CORBA_P.Server_Tools is

pragma Elaborate_Body;

type Hook_Type is access procedure;
Initiate_Server_Hook : Hook_Type;

-- Access to a procedure to be called upon start up.

-- See Initiate_Server for more details.

procedure Initiate_Server (Start_New_Task : Boolean := False);

-- Start a new ORB, and initialize the Root POA.

-- If Start_New_Task is True, a new task will be created and

-- control will be returned to the caller. Otherwise, the ORB

-- will be executing in the current context.

-- If the Initiate_Server_Hook variable is not null, the

-- designated procedure will be called after initializing the ORB,

-- prior to entering the server loop.

Chapter 6: CORBA 43

function Get_Root_POA return PortableServer.POA.Local_Ref;

-- Return the Root_POA attached to the current ORB instance.

procedure Initiate_Servant

(S : PortableServer.Servant;

R : out CORBA.Object.Ref’Class);

-- Initiate a servant: register a servant to the Root POA.

-- If the Root POA has not been initialized, initialize it.

procedure Reference_To_Servant

(R : CORBA.Object.Ref’Class;

S : out PortableServer.Servant);

-- Convert a CORBA.Object.Ref into a PortableServer.Servant.

procedure Servant_To_Reference

(S : PortableServer.Servant;

R : out CORBA.Object.Ref’Class);

-- Convert a PortableServer.Servant into CORBA.Object.Ref.

procedure Initiate_Well_Known_Service

(S : PortableServer.Servant;

Name : String;

R : out CORBA.Object.Ref’Class);

-- Make S accessible through a reference appropriate for

-- generation of a corbaloc URI with a named key of Name.

end PolyORB.CORBA_P.Server_Tools;

44 PolyORB User’s Guide

Chapter 7: RT-CORBA 45

7 RT-CORBA

7.1 What you should know before Reading this section

This section assumes that the reader is familiar with the Real-Time CORBA specifications
described in [OMG02a] and [OMG03].

7.2 Installing RT-CORBA

The RT-CORBA library is installed as part of the installation of the CORBA personality.
Note that you may have to select specific run-time options to enable full compliance with
RT-CORBA specifications and ensure real time behavior.

7.3 Configuring RT-CORBA

This section details how to configure your application to use the RT-CORBA library.

7.3.1 PolyORB.RTCORBA_P.Setup

RT-CORBA specifications mandates the implementation provides a mechanism to set up
some of its internals.

The package PolyORB.RTCORBA_P.Setup provides an API to set up the
PriorityMapping and PriorityTransform objects.

--

-- --

-- POLYORB COMPONENTS --

-- --

-- P O L Y O R B . R T C O R B A _ P . S E T U P --

-- --

-- S p e c --

-- --

-- Copyright (C) 2003-2004 Free Software Foundation, Inc. --

-- --

-- PolyORB is free software; you can redistribute it and/or modify it --

-- under terms of the GNU General Public License as published by the Free --

-- Software Foundation; either version 2, or (at your option) any later --

-- version. PolyORB is distributed in the hope that it will be useful, --

-- but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- --

-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public --

-- License for more details. You should have received a copy of the GNU --

-- General Public License distributed with PolyORB; see file COPYING. If --

-- not, write to the Free Software Foundation, 59 Temple Place - Suite 330, --

-- Boston, MA 02111-1307, USA. --

-- --

-- As a special exception, if other files instantiate generics from this --

-- unit, or you link this unit with other files to produce an executable, --

-- this unit does not by itself cause the resulting executable to be --

-- covered by the GNU General Public License. This exception does not --

-- however invalidate any other reasons why the executable file might be --

-- covered by the GNU Public License. --

-- --

-- PolyORB is maintained by ACT Europe. --

-- (email: sales@@act-europe.fr) --

46 PolyORB User’s Guide

-- --

--

-- Implementation Notes: RTCORBA specifications defines objects that

-- are (Ada) programming language objects rather than CORBA

-- objects. Therefore the normal mechanism for coupling an

-- implementation to the code that uses it (an object reference) does

-- not apply. The implementation must provide specific mechanisms to

-- enable this coupling.

--

-- This package provides accessors to configure them. It supports the

-- following objects:

-- * PriorityMapping

-- * PriorityTransform

with RTCORBA.PriorityMapping;

with RTCORBA.PriorityTransform;

package PolyORB.RTCORBA_P.Setup is

-- PriorityMapping

type PriorityMapping_Access is
access all RTCORBA.PriorityMapping.Object’Class;

procedure Set_Priority_Mapping

(Mapping : RTCORBA.PriorityMapping.Object’Class);

pragma Inline (Set_Priority_Mapping);

-- Set RT-ORB PriorityMapping object,

-- overrides previous settings, if any.

function Get_Priority_Mapping return PriorityMapping_Access;

pragma Inline (Get_Priority_Mapping);

-- Return RT-ORB PriorityMapping object.

-- PriorityTransform

type PriorityTransform_Access is
access all RTCORBA.PriorityTransform.Object’Class;

procedure Set_Priority_Transform

(Transform : RTCORBA.PriorityTransform.Object’Class);

pragma Inline (Set_Priority_Transform);

-- Set RT-ORB global Priority Mapping object,

-- overrides previous settings, if any.

function Get_Priority_Transform return PriorityTransform_Access;

pragma Inline (Get_Priority_Transform);

-- Return RT-ORB global Priority Mapping object.

end PolyORB.RTCORBA_P.Setup;

7.4 RTCORBA.PriorityMapping

PolyORB provides different implementations of this specification:

• RTCORBA.PriorityMapping.Direct maps CORBA priorities directly to native priori-

Chapter 7: RT-CORBA 47

ties. If the CORBA priority is not in System.Priority’Range, then the mapping is
not possible.

• RTCORBA.PriorityMapping.Linear maps each individual native priority to a contigu-
ous range of CORBA priorities, so that the complete CORBA priority range is used
up for the mapping. See ‘rtcorba-prioritymapping-linear.adb’ for more details.

7.5 RTCosScheduling Service

7.5.1 Overview

PolyORB provides an implementation of the RTCosScheduling service defined in [OMG02a].

PolyORB uses some permission stated in the specifications to allow for an easy config-
uration of ClientScheduler and ServerScheduler, defined in the following sections.

Additional information on the use of the API may be found in the RTCosScheduling
example in ‘examples/corba/rtcorba/rtcosscheduling’.

7.5.2 RTCosScheduling::ClientScheduler

Client side activities are defined in a configuration file, than can be loaded using
‘RTCosScheduling.ClientScheduler.Impl.Load_Configuration_File’

On the client side, the user can set up

• current task priority, using registered PriorityMapping object.

This file has the following syntax, derived from PolyORB configuration files syntax:
Name of the activity

[activity activity1]

Activity priority, in RTCORBA.Priority’Range

priority=10000

In this example, activity activity1 is defined with priority 10’000.

7.5.3 RTCosScheduling::ServerScheduler

Server side POAs and objects are defined in a configuration file, than can be loaded using
‘RTCosScheduling.ClientScheduler.Impl.Load_Configuration_File’

On the server side, the user can set up

• object priority, using registered PriorityMapping object.

• all RT-CORBA-specific POA configuration parameters:

This file has the following syntax, derived from PolyORB configuration files syntax:
Name of the object

[object object1]

Object priority, in RTCORBA.Priority’Range

priority=10000

In this example, object object1 is defined with priority 10’000.

48 PolyORB User’s Guide

Name of the POA

[poa poa1]

PriorityModelPolicy for POA

priority_model=CLIENT_PROPAGATED

default_priority=0 # not meaningful for CLIENT_PROPAGATED

Threadpools attached to POA

threadpool_id=1

Name of the POA

[poa poa2]

PriorityModelPolicy for POA

priority_model=SERVER_DECLARED

default_priority=40

Threadpools attached to POA

threadpool_id=2

Name of the POA

[poa poa3]

POA with no defined policies

In this example, Two POAs are defined: POA poa1 will use the CLIENT_PROPAGATED Pri-
orityModel Policy, default value is not meaningful for this configuration, poa1 will use the
Threadpool #1; POA poa2 will use the SERVER_DECLARED PriorityModel Policy, default
server priority is 40, poa2 will use the Threadpool #2. Note that both policies are optional
and can be omitted.

Chapter 8: Ada Distributed System Annex (DSA) 49

8 Ada Distributed System Annex (DSA)

8.1 What you should know before Reading this section

This section assumes the reader is familiar with annex E of the Ada 95 Reference Manual
[ISO95]. To build DSA applications with PolyORB you will use a tool named po_gnatdist.
This tool is documented in the GLADE’s User Guide [gla06].

8.2 Installing DSA application personality

Ensure PolyORB has been configured and then compiled with DSA application personality.
To build the DSA application personality, see Chapter 2 [Installation], page 5.

8.3 A small example of a DSA application

In this section we will write a really simple client-server application using PolyORB DSA.
The server will provide a Remote Call Interface composed of a single Echo_String func-
tion that will take a String and return it to the caller.

Here is the code for the server:
‘server.ads’:

package Server is
pragma Remote_Call_Interface;

function Echo_String (S : String) return String;

end Server;

‘server.adb’:

package body Server is

function Echo_String (S : String) return String is
begin

return S;

end Echo_String;

end Server;

And here is the code for the client:
‘client.adb’:

with Ada.Text_IO; use Ada.Text_IO;

with Server;

procedure Client is
begin

Put_Line ("The client has started!");

Put ("Thus spake my server upon me:");

Put_Line (Server.Echo_String ("Hi!"));

end Client;

For more details about the distributed system annex please report yourself to the Ada 95
Reference Manual [ISO95].

50 PolyORB User’s Guide

8.4 Building a DSA application with PolyORB

8.4.1 Foreword

The preferred way to build distributed application is using po_gnatdist. po_gnatdist is
a tool that provides a configuration language, allowing the user to partition his program
and specify various parameters for each partition.

8.4.2 Installing po gnatdist

po_gnatdist is built and installed as part of your PolyORB installation provided the DSA
personality is enabled.

8.4.3 Using po gnatdist with PolyORB

For extensive documentation on the configuration language of po_gnatdist and usage of
the po_gnatdist command, please report yourself to the GLADE User Guide. In this
section we will only explain basic usage of po_gnatdist to compile the Echo example.

First we need to describe how we want to partition our application. For this we will
create a po_gnatdist configuration file ‘echo.cfg’:

configuration Echo is

-- We declare a server partition that executes the server package ...

Server_Partition : partition := (Server);

-- ... and a client partition that executes the client main procedure

Client_Partition : partition;

procedure Client is in Client_Partition;

-- The partitions’ executables should be put in ./bin

for Partition’Directory use "bin";

end Echo;

Now we are ready to build our distributed application with the command:
po_gnatdist echo.cfg

8.5 Running a DSA application

By default po_gnatdist will use the Ada starter. So if you have not specified pragma
Starter (None); in the po_gnatdist configuration file, you should have a starter in your
build dir, named after your configuration file. In this case you just have to run this program.

If you don’t want to use the Starter and have specified pragma Starter (None); in your
configuration file, then you should have, in your Partition’Directory, one binary for each of
your partitions. You’ll have to start each of these programs manually.

In both cases you must specify a name server for your application. You can use for
example the one included in PolyORB: ‘po_cos_naming’.

Just ensure that you set the global environment variable POLYORB_DSA_NAME_SERVICE
to an IOR URI referencing the running name server.

Chapter 8: Ada Distributed System Annex (DSA) 51

8.6 Configuring a DSA application

You can configure some parameters of your DSA applications in the file polyorb.conf. You
will find these parameters in the section [dsa]:

name_service = [IOR/corbaloc]
You can set this parameter instead of the environment variable POLYORB_DSA_
NAME_SERVICE. Though if you use a Starter ensure that this parameter is set
for all the partitions, as this is not done automatically as for the POLYORB_DSA_
NAME_SERVICE environment variable.

max_failed_requests = [integer]
Each partition will attempt a given number of requests to the name server
before failing. This allows some time for every partition to register in the name
server.

delay_between_failed_requests = [duration in milliseconds]
As above, only this specifies the delay between requests.

termination_initiator = [true/false]
Is this partition a termination initiator.

termination_policy =
[global_termination/deferred_termination/local_termination]

The termination policy for this partition.

tm_time_between_waves = [duration in milliseconds]
The delay between termination waves.

tm_time_before_start = [duration in milliseconds]
The delay before the termination manager starts sending waves.

detach = [true/false]
If true, the partition will be detached.

rsh_options = [string]
Options passed to the rsh command when using the module polyorb.dsa p-
remote launch

rsh_command = [string]
Which command should the module polyorb.dsa p-remote launch use to spawn
remote programs.

52 PolyORB User’s Guide

Chapter 9: MOMA 53

9 MOMA

9.1 What you should know before Reading this section

This section assumes that the reader is familiar with the JMS specifications described in
[SUN99]. MOMA is a thick adaptation of the JMS specification to the Ada programming
language. It preserves most of its concepts.

9.2 Installing MOMA application personality

Ensure PolyORB has been configured and then compiled with MOMA application person-
ality. See Chapter 4 [Building an application with PolyORB], page 11 for more details on
how to check installed personalities.

To build the MOMA application personality, see Chapter 2 [Installation], page 5.

9.3 Package hierarchy

Packages installed in ‘$INSTALL_DIR/include/polyorb/moma’ hold the MOMA API.
MOMA is built around two distinct set of packages:
1. ‘MOMA.*’ hold the public MOMA library, all the constructs the user may use.
2. ‘POLYORB.MOMA_P.*’ hold the private MOMA library, these packages shall not be used

when building your application.

54 PolyORB User’s Guide

Chapter 10: Ada Web Server (AWS) 55

10 Ada Web Server (AWS)

The documentation of this personality will appear in a future revision of PolyORB.

56 PolyORB User’s Guide

Chapter 11: GIOP 57

11 GIOP

11.1 Installing GIOP protocol personality

Ensure PolyORB has been configured and then compiled with GIOP protocol personality.
See Chapter 4 [Building an application with PolyORB], page 11 for more details on how to
check installed personalities.

To enable the configuration of the GIOP protocol personality, see Chapter 2 [Installa-
tion], page 5.

11.2 GIOP Instances

GIOP is a generic protocol that can be instantiated for multiple transport stacks. PolyORB
proposes three different instances.

11.2.1 IIOP

Internet Inter-ORB Protocol (IIOP) is the default protocol defined by the CORBA specifi-
cations. It is a TCP/IP, IPv4, based protocol that supports the full semantics of CORBA
requests.

11.2.2 SSLIOP

The SSLIOP protocol provides transport layer security for transmitted requests. Its provides
encryption of GIOP requests.

To build the SSLIOP, it is required to activate SSL-related features when building Poly-
ORB. See Chapter 2 [Installation], page 5 for more details.

Enabling security is completely transparent to a preexisting application, it is also possible
to phase in secure communications by allowing incoming requests which are unsecured.

11.2.3 DIOP

Datagram Inter-ORB Protocol (DIOP) is a specialization of GIOP for the UDP/IP protocol
stack. It supports only asynchronous (oneway) requests.

This protocol is specific to PolyORB. DIOP 1.0 is mapping of GIOP on top of UDP/IP.
DIOP 1.0 uses GIOP 1.2 message format.

11.2.4 MIOP

Unreliable Multicast Inter-ORB Protocol (MIOP) [OMG02b] is a specialization of GIOP
for IP/multicast protocol stack. It supports only asynchronous (oneway) requests.

11.3 Configuring the GIOP personality

GIOP personality is configured using a configuration file. See Section 4.2.1 [Using a config-
uration file], page 12 for more details.

Here is a summary of available parameters for each instance of GIOP.

58 PolyORB User’s Guide

11.3.1 Common configuration parameters

This section details configuration parameters common to all GIOP instances.

###

GIOP parameters

#

[giop]

###

Native code sets

#

Available char data code sets:

16#00010001# ISO 8859-1:1987; Latin Alphabet No. 1

16#05010001# X/Open UTF-8; UCS Transformation Format 8 (UTF-8)

#

Available wchar data code sets:

16#00010100# ISO/IEC 10646-1:1993; UCS-2, Level 1

16#00010109# ISO/IEC 10646-1:1993;

UTF-16, UCS Transformation Format 16-bit form

#

#giop.native_char_code_set=16#00010001#

#giop.native_wchar_code_set=16#00010100#

#

The following parameters force the inclusion of fallback code sets

as supported conversion code sets. This is required to enable

interoperability with ORBs whose code sets negotiation support is

broken. See PolyORB’s Users Guide for additional information.

#

#giop.add_char_fallback_code_set=false

#giop.add_wchar_fallback_code_set=false

11.3.2 IIOP Configuration Parameters

###

IIOP parameters

#

[iiop]

###

IIOP Global Settings

Preference level for IIOP

#polyorb.binding_data.iiop.preference=0

IIOP’s default address

#polyorb.protocols.iiop.default_addr=127.0.0.1

IIOP’s default port

#polyorb.protocols.iiop.default_port=2809

IIOP’s alternate addresses

#polyorb.protocols.iiop.alternate_listen_addresses=127.0.0.1:2810 127.0.0.1:2820

Default GIOP/IIOP Version

#polyorb.protocols.iiop.giop.default_version.major=1

#polyorb.protocols.iiop.giop.default_version.minor=2

Chapter 11: GIOP 59

###

IIOP 1.2 specific parameters

Set to True to enable IIOP 1.2

#polyorb.protocols.iiop.giop.1.2.enable=true

Set to True to send a locate message prior to the request

#polyorb.protocols.iiop.giop.1.2.locate_then_request=true

Maximum message size before fragmenting request

#polyorb.protocols.iiop.giop.1.2.max_message_size=1000

###

IIOP 1.1 specific parameters

Set to True to enable IIOP 1.1

#polyorb.protocols.iiop.giop.1.1.enable=true

Set to True to send a locate message prior to the request

#polyorb.protocols.iiop.giop.1.1.locate_then_request=true

Maximum message size before fragmenting request

#polyorb.protocols.iiop.giop.1.1.max_message_size=1000

###

IIOP 1.0 specific parameters

Set to True to enable IIOP 1.0

#polyorb.protocols.iiop.giop.1.0.enable=true

Set to True to send a locate message prior to the request

#polyorb.protocols.iiop.giop.1.0.locate_then_request=true

11.3.3 SSLIOP Configuration Parameters

11.3.3.1 Ciphers name

PolyORB’s SSLIOP uses the OpenSSL library to support all recommended by CORBA
3.0.3 ciphers. OpenSSL library uses specific names for ciphers. The table below contains
CORBA recommended ciphers names and its OpenSSL equivalents:
CORBA recommended ciphers OpenSSL equivalent
TLS RSA WITH RC4 128 MD5 RC4-MD5
SSL RSA WITH RC4 128 MD5 RC4-MD5
TLS DHE DSS WITH DES CBC SHA EDH-DSS-CBC-SHA
SSL DHE DSS WITH DES CBC SHA EDH-DSS-CBC-SHA
TLS RSA EXPORT WITH RC4 40 MD5 EXP-RC4-MD5
SSL RSA EXPORT WITH RC4 40 MD5 EXP-RC4-MD5
TLS DHE DSS EXPORT WITH DES40 CBC SHA EXP-EDH-DSS-DES-CBC-SHA
SSL DHE DSS EXPORT WITH DES40 CBC SHA EXP-EDH-DSS-DES-CBC-SHA

11.3.3.2 SSLIOP Parameters
###

SSLIOP parameters

#

60 PolyORB User’s Guide

[ssliop]

###

SSLIOP Global Settings

SSLIOP’s default port

#polyorb.protocols.ssliop.default_port=2810

If no SSLIOP default address is provide, PolyORB reuses IIOP’s

address

Private Key file name

#polyorb.protocols.ssliop.privatekeyfile=privkey.pem

Certificate file name

#polyorb.protocols.ssliop.certificatefile=cert.pem

Trusted CA certificates file

#polyorb.protocols.ssliop.cafile=cacert.pem

Trusted CA certificates path

#polyorb.protocols.ssliop.capath=demoCA/certs

Disable unprotected invocations

#polyorb.protocols.ssliop.disable_unprotected_invocations=true

###

Peer certificate verification mode

Verify peer certificate

#polyorb.protocols.ssliop.verify=false

Fail if client did not return certificate. (server side option)

#polyorb.protocols.ssliop.verify_fail_if_no_peer_cert=false

Request client certificate only once. (server side option)

#polyorb.protocols.ssliop.verify_client_once=false

11.3.4 DIOP Configuration Parameters
###

DIOP Global Settings

Preference level for DIOP

#polyorb.binding_data.diop.preference=0

DIOP’s default address

#polyorb.protocols.diop.default_addr=127.0.0.1

DIOP’s default port

#polyorb.protocols.diop.default_port=12345

Default GIOP/DIOP Version

#polyorb.protocols.diop.giop.default_version.major=1

#polyorb.protocols.diop.giop.default_version.minor=2

###

DIOP 1.2 specific parameters

Chapter 11: GIOP 61

Set to True to enable DIOP 1.2

#polyorb.protocols.diop.giop.1.2.enable=true

Maximum message size

#polyorb.protocols.diop.giop.1.2.max_message_size=1000

###

DIOP 1.1 specific parameters

Set to True to enable DIOP 1.1

#polyorb.protocols.diop.giop.1.1.enable=true

Maximum message size

#polyorb.protocols.diop.giop.1.1.max_message_size=1000

###

DIOP 1.0 specific parameters

Set to True to enable DIOP 1.0

#polyorb.protocols.diop.giop.1.0.enable=true

11.3.5 MIOP Configuration Parameters
###

MIOP parameters

#

[miop]

###

MIOP Global Settings

Preference level for MIOP

#polyorb.binding_data.uipmc.preference=0

Maximum message size

#polyorb.miop.max_message_size=6000

Time To Leave parameter

#polyorb.miop.ttl=15

Multicast address to use

#polyorb.miop.multicast_addr=239.239.239.18

Multicast port to use

#polyorb.miop.multicast_port=5678

Set to True to enable MIOP

#polyorb.protocols.miop.giop.1.2.enable=false

Maximum message size

#polyorb.protocols.miop.giop.1.2.max_message_size=1000

11.4 Code sets

This sections details the various steps required to add the support for new character code
sets in PolyORB’s GIOP personality. Please, refer to CORBA specifications ([OMG04]),
par. 13.10 for more details on this topic.

62 PolyORB User’s Guide

11.4.1 Supported code sets

PolyORB supports the following list of code sets:
1. Available char data code sets:

1. 16#00010001# ISO 8859-1:1987; Latin Alphabet No. 1
2. 16#05010001# X/Open UTF-8; UCS Transformation Format 8 (UTF-8)

2. Available wchar data code sets:
1. 16#00010100# ISO/IEC 10646-1:1993; UCS-2, Level 1
2. 16#00010109# ISO/IEC 10646-1:1993; UTF-16, UCS Transformation Format 16-

bit form

11.4.2 Incompatibility in code set support

Some ORB reports incompatiblity in code sets because fallback converters are not explicitely
present in the reference. To work-around this issue, you may use the following parameters:

[giop]

giop.add_char_fallback_code_set=true

giop.add_wchar_fallback_code_set=true

11.4.3 Adding support for new code sets

PolyORB allows users to extend the set of supported native character code sets. Adding
support for new character code set consists of the following steps:
1. Developing sets of Converters - special objects which do marshalling/unmarshalling

operations of character data. At least two Converters are required: for direct mar-
shalling character data in native code set and for marshalling/unmarshalling character
data in fallback character code set (UTF-8 for char data and UTF-16 for wchar data).
Additional Converters may be developed for marshalling character data in conversion
code set.

2. Developing converter factory subprogram for each Converter.
3. Registering native code set, its native and fallback converters and optional conversions

char sets and it’s converters.

11.4.4 Character data Converter

Character data converter do direct marshalling/unmarshalling of character data (char or
wchar - depending of Converter) into/from PolyORB’s buffer. This allows to minimize
speed penalty on character data marshalling.

Character data Converter for char data have the following API (from
‘PolyORB.GIOP_P.Code_Sets.Converers’ package:

type Converter is abstract tagged private;

procedure Marshall

(C : Converter;

Buffer : access Buffers.Buffer_Type;

Data : Types.Char;

Error : in out Errors.Error_Container)

is abstract;

procedure Marshall

Chapter 11: GIOP 63

(C : Converter;

Buffer : access Buffers.Buffer_Type;

Data : Types.String;

Error : in out Errors.Error_Container)

is abstract;

procedure Unmarshall

(C : Converter;

Buffer : access Buffers.Buffer_Type;

Data : out Types.Char;

Error : in out Errors.Error_Container)

is abstract;

procedure Unmarshall

(C : Converter;

Buffer : access Buffers.Buffer_Type;

Data : out Types.String;

Error : in out Errors.Error_Container)

is abstract;

Marshall subprograms do marshalling of one character or string of character into the
buffer. Unmarshall subprograms do unmarshalling of one character or string of characters
from the buffer.

Note: Depending on item size of character data (char/wchar) and GIOP version mar-
shalling/unmarshalling algorithms may vary. For several situations marshalling of string is
not equivalent to marshalling its length and marshalling one by one each string’s character.
Please refere to GIOP specifications for more details.

If marshalling/unmarshalling fails, subprograms must set Error parameter to correspond-
ing error, usually Data_Conversion_E.

Note: We recommend to always use Data Conversion E error code with Minor status 1.
All Converters (native, fallback and conversion) have similar API. Wchar data convert-

ers differ only in parameter type.

11.4.5 Converters factories

To create new converters, PolyORB uses special factory subprograms with the following
profile:

function Factory return Converter_Access;

or
function Factory return Wide_Converter_Access;

This function must allocate a new Converter and initialize its state.

11.4.6 Registering new code sets

Registering new native character data code sets begins from registering new native character
data code sets and its native and fallback Converters. This is done using Register_
Native_Code_Set:

procedure Register_Native_Code_Set

(Code_Set : Code_Set_Id;

Native : Converter_Factory;

Fallback : Converter_Factory);

or

64 PolyORB User’s Guide

procedure Register_Native_Code_Set

(Code_Set : Code_Set_Id;

Native : Wide_Converter_Factory;

Fallback : Wide_Converter_Factory);

If you have additional conversion code sets Converters you may register it by calling
Register Conversion Code Set subprogram:

procedure Register_Conversion_Code_Set

(Native : Code_Set_Id;

Conversion : Code_Set_Id;

Factory : Converter_Factory);

or
procedure Register_Conversion_Code_Set

(Native : Code_Set_Id;

Conversion : Code_Set_Id;

Factory : Wide_Converter_Factory);

Note: because of incompatibility in the support of code sets negotiation in some ORB’s
it is recommend to recognize two boolean PolyORB’s parameters:

[giop]

giop.add_char_fallback_code_set=false

giop.add_wchar_fallback_code_set=false

and also register fallback Converter as conversion Converter if the corresponding param-
eter set to True.

Finally, define your prefferred native character data code sets by parameters (only integer
code sets codes now supported):

[giop]

giop.native_char_code_set=16#00010001#

giop.native_wchar_code_set=16#00010100#

Chapter 12: SOAP 65

12 SOAP

12.1 Installing SOAP protocol personality

Ensure PolyORB has been configured and then compiled with SOAP protocol personality.
See Chapter 4 [Building an application with PolyORB], page 11 for more details on how to
check installed personalities.

To enable the configuration of the SOAP application personality, see Chapter 2 [Instal-
lation], page 5.

12.2 Configuring the SOAP personality

SOAP personality is configured using a configuration file. See Section 4.2.1 [Using a con-
figuration file], page 12 for more details.

Here is a summary of available parameters for each instance of SOAP.
###

SOAP parameters

#

[soap]

###

SOAP Global Settings

Preference level for SOAP

#polyorb.binding_data.soap.preference=0

SOAP’s default address

#polyorb.protocols.soap.default_addr=127.0.0.1

SOAP’s default port

#polyorb.protocols.soap.default_port=8080

66 PolyORB User’s Guide

Chapter 13: Tools 67

13 Tools

13.1 po_catref

po_catref is a utility for viewing components of a stringified reference (CORBA IOR,
corbaloc or URI). Reference’s component include reference to access an object through
multiple protocols (e.g. CORBA IIOP, SOAP) and configuration parameters associated to
a reference (e.g. GIOP Service Contexts).

Usage:

po_catref <stringified reference>

Note: po_catref can only process protocols PolyORB has been configured with.

13.2 po_dumpir

po_dumpir is a utility for viewing the content of an instance of the CORBA Interface
Repository.

Usage:

po_dumpir <stringified reference>

Note: po_dumpir will be compiled and installed only if the CORBA personality and the ‘ir’
service is compiled. Please see Chapter 4 [Building an application with PolyORB], page 11
for more details on how to set up PolyORB.

13.3 po_names

po_names is a stand-alone name server. It has an interface similar to CORBA COS Naming,
without dragging any dependencies on CORBA mechanisms. This name server is to be used
when the CORBA application personality is not required, e.g. with the DSA or MOMA
application personalities.

68 PolyORB User’s Guide

Appendix A: Performance considerations 69

Appendix A Performance considerations

This section discusses performance when using PolyORB. Many elements can be configured,
See Chapter 4 [Building an application with PolyORB], page 11. By carefully selecting
them, you can increase the throughput of your application.

We review some parameters that can impact performance.
• Build options:
• You should not build PolyORB with debug activated for production environment.

• Tasking policies:
• You should carefully select the tasking policy to reduce dynamic ressource allo-

cation (tasks, entry points, etc.). See Chapter 5 [Tasking model in PolyORB],
page 17.

• Transport parameters:
• Setting tcp.nodelay to false will disable Nagle buffering.

• GIOP parameters:
• Setting polyorb.protocols.iiop.giop.1.X.locate_then_request, where X is

the GIOP version in use, to false will disable Locate_Message, reducing the num-
ber of requests exchanged,

• Increasing polyorb.protocols.iiop.giop.1.X.max_message_size, where X is
the GIOP version in use, will reduce GIOP fragmentation, reducing middleware
processing.

70 PolyORB User’s Guide

Appendix B: Conformance to standards 71

Appendix B Conformance to standards

B.1 CORBA standards conformance

The OMG defines CORBA-compliant ORB as implementations of the CORBA specifica-
tions that supports CORBA Core and one mapping of CORBA’s IDL.

Here is a summary of PolyORB’s conformance issues with the latest CORBA specifica-
tions (revision 3.0, formal/02-06-01)

B.1.1 CORBA IDL-to-Ada mapping

PolyORB supports the IDL-to-Ada specification [OMG01], with the following limitations
in both CORBA API and the IDL-to-Ada compiler idlac:
• no support for abstract interfaces, object-by-value, context data;
• no support for CORBA Components;
• implemented API may present some divergences with current mapping.

Note: generated code is constrained by the limitations of the Ada compiler used. Please
refer to its documentation for more information.

B.1.2 CORBA Core

This set encompasses chapters 1-11. Chapters 3 to 11 are normative.
• Chapter 3 describes OMG IDL syntax and semantics. See Section B.1.1 [CORBA

IDL-to-Ada mapping], page 71 for a description of non-implemented features;
• Chapter 4 describes the ORB Interface.

PolyORB partially supports this chapter.
• Chapter 5 describes Value Type Semantics.

PolyORB does not support this chapter.
• Chapter 6 describes Abstract Interface Semantics.

PolyORB does not support this chapter.
• Chapter 7 describes Dynamic Invocation Interface (DII)

PolyORB supports only the following methods: Create_Request, Invoke and Delete.
• Chapter 8 describes Dynamic Skeleton Interface (DSI)

PolyORB partially supports this chapter: this interface is fully implemented except for
context data.

• Chapter 9 describes Dynamic Management of Any Values
PolyORB partially supports this chapter: this interface is fully implemented except for
object references and value types.

• Chapter 10 describes The Interface Repository
PolyORB supports this chapter, except for the ExtValueDef interface, and all CORBA
CCM related interfaces.

• Chapter 11 describes The Portable Object Adapter
PolyORB supports this chapter with the following limitations:

72 PolyORB User’s Guide

• USE_SERVANT_MANAGER policy is partially supported: the ServantLocator object
is not implemented;

• support for SINGLE_THREAD policy is incomplete, reentrant calls may not work;
• Wait_For_Completion and Etherealize_Objects are not taken into account in

PortableServer.POAManager;
• PortableServer.POAManagerFactory API is not implemented.

B.1.3 CORBA Interoperability

This set encompasses chapters 12-16.
• See Section B.4 [CORBA-GIOP standards conformance], page 73 for more information

on this point.

B.1.4 CORBA Interworking

This set encompasses chapters 17-21.
• Chapters 17 to 20 describe interoperability with Microsoft’s COM/DCOM.

PolyORB provides no support for these chapters.
• Chapter 21 describes PortableInterceptor.

PolyORB provides partial support for this chapter.

B.1.5 CORBA Quality Of Service

This set encompasses chapters 22-24.
• Chapter 22 describes CORBA Messaging
• Chapter 23 describes Fault Tolerant CORBA
• Chapter 24 describes Secure Interoperability.

PolyORB provides no support for these chapters.

B.1.6 CORBA COS Services

COS Services are specifications of high level services that are optional extensions to the
CORBA specification. They provide helper packages to build distributed applications.
PolyORB implement the following COS Services:
• COS Event and TypedEvent;
• COS Naming;
• COS Notification;
• COS Time;

B.1.7 CORBA Specialized services

PolyORB supports the following specialized services:
• Unreliable Multicast (MIOP), proposed 1.0 specification [OMG02b].
• RT-CORBA extensions, see Chapter 7 [RT-CORBA], page 45 for more information on

this point.
• CORBA security extensions, see [OMG] for more information on this point.

Appendix B: Conformance to standards 73

B.2 RT-CORBA standards conformance

RT-CORBA specifications relies on the CORBA application personality. It inherits all its
issues, and implementations notes.

In addition, here is a list of issues with the implementation of RT-CORBA static
[OMG02a] and dynamic scheduling [OMG03] specifications.
• RT-CORBA static and dynamic scheduling (Chapter 2)

Chapter 2 is common to these two specifications. It describes key mechanisms of RT-
CORBA that are common to both specifications.
PolyORB partially implements this chapter from section 2.1 up to section 2.10. Poly-
ORB does not provide support for all connection-related policies.
See implementation notes in the different package specifications for more details.

• RT-CORBA static scheduling (Chapter 3)
PolyORB supports this chapter.

• RT-CORBA dynamic scheduling (Chapter 3)
PolyORB does not support this chapter.

B.3 CSIv2 standards conformance

PolyORB supports IIOP/SSL.

B.4 CORBA/GIOP standards conformance

GIOP supports part of the CORBA Interoperability specification, from chapters 12 to 16
of CORBA specifications.

Chapter 12 defines general concepts about ORB interoperability. It defines
interoperbility-compliant ORB as ORB that supports:
• API that supports the construction of request-level inter-ORB bridges, Dynamic In-

vocation Interface, Dynamic Skeleton Interface and the object identity operations de-
scribed in the Interface Repository. See Section B.1 [CORBA standards conformance],
page 71 for more details.

• IIOP protocol as defined in chapter 15.

Support for other components is optional.
• Chapter 13 describes the ORB Interoperability Architecture.

PolyORB fully supports this chapter.
• Chapter 14 describes how to build Inter-ORB Bridges.

PolyORB fully supports this chapter.
• Chapter 15 describes the General Inter-ORB Protocol (GIOP).

PolyORB supports GIOP version 1.0 to 1.2, the CDR representation scheme. Support
for IOR and corbaloc addressing mechanisms is supported in CORBA personality, see
Chapter 6 [CORBA], page 23 for more details.
PolyORB does not support the optional IIOP IOR Profile Components, Bi-directional
GIOP. PolyORB also does not support fragmentation in GIOP 1.1.

• Chapter 16 describes the DCE ESIOP protocol.
PolyORB does not support this optional chapter.

74 PolyORB User’s Guide

B.5 SOAP standards conformance

The documentation of the SOAP standards conformance of PolyORB will appear in a future
revision of PolyORB.

Appendix C: References 75

Appendix C References

1. [DB98] B. Dobbing and A. Burns. The Ravenscar tasking profile for high integrity
real-time programs. In Proceedings of SigAda’98, Washington, DC, USA, November
1998.

2. [gla06] GLADE User’s Guide r 1.54, February 2006.
3. [ISO95] ISO. Information Technology – Programming Languages – Ada. ISO, February

1995. ISO/IEC/ANSI 8652:1995.
4. [Obr03] P. Obry. Ada Web Server (AWS) 1.3, 2003.
5. [OMG] OMG. Common Secure Interoperability (CSIv2). OMG.
6. [OMG01] OMG. Ada Language Mapping Specification, v1.2. OMG, October 2001.

OMG Technical Document formal/2001-10-42.
7. [OMG02a] OMG. Real-Time CORBA Specification, static scheduling, v1.1. OMG,

April 2002. OMG Technical Document formal/2002-08-02.
8. [OMG02b] OMG. unreliable Multicast InterORB Protocol specification. OMG, 2002.

OMG Technical Document ptc/03-01-11.
9. [OMG03] OMG. Real-Time CORBA Specification, dynamic scheduling, v2.0. OMG,

April 2003. OMG Technical Document formal/2003-11-01.
10. [OMG04] OMG. The Common Object Request Broker: Architecture and Specification,

revision 3.0.3. OMG, March 2004. OMG Technical Document formal/2004-03-12.
11. [SUN99] SUN. Java Message Service, 1999.
12. [W3C00] W3C. Extensible Markup Language (XML) 1.0, October 2000. W3C recom-

mandation.
13. [W3C03] W3C. Simple Object Access Protocol (SOAP) 1.2: primer, june 2003. W3C

recommandation.

76 PolyORB User’s Guide

Appendix D: GNU Free Documentation License 77

Appendix D GNU Free Documentation License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copy-
right holder saying it can be distributed under the terms of this License. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to
the Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

78 PolyORB User’s Guide

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent modification
by readers is not Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modification.
Opaque formats include PostScript, PDF, proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML produced by some
word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Docu-
ment’s license notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

Appendix D: GNU Free Documentation License 79

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the

80 PolyORB User’s Guide

Title Page. If there is no section entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties – for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice.

Appendix D: GNU Free Documentation License 81

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sections
entitled “Acknowledgements”, and any sections entitled “Dedications”. You must delete all
sections entitled “Endorsements.”

Heading 6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released

under this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of
this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an “aggregate”, and this License
does not apply to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include the
original English version of this License. In case of a disagreement between the translation
and the original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute

82 PolyORB User’s Guide

the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with the Invariant Sections
being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with
the Back-Cover Texts being LIST. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix D: Index 83

Index

A
Application personalities . 9
AWS, Ada Web Server . 9, 55

C
Code sets, GIOP . 61
Configuration, CORBA . 33
Configuration, GIOP . 57
Configuration, PolyORB . 11
Conventions . 2
CORBA . 9, 23
CORBA COS Naming . 24
CORBA IDL-to-Ada mapping 71
CORBA, COS Services . 9, 72
CORBA, Server-side exception 37
CORBA, Specialized services 72
CORBA::Unknown . 37

D
Debug information . 13
DIOP . 10, 57
DSA, Distributed System Annex 9, 49

E
Exceptions . 14

F
Free Documentation License, GNU 77

G
GIOP . 10, 57, 58
GNU Free Documentation License 77

I
idlac . 23
IIOP . 10, 57

L
License, GNU Free Documentation 77

M
MIOP . 10, 57, 72
MOMA, Message Oriented Middleware for Ada

. 9, 53

P
Personalities . 9
po_catref . 67
po_cos_naming . 24
po_dumpir . 67
po_ir . 25
po_names . 67
PolyORB . 3
polyorb-config . 14
‘polyorb.conf’ . 12
PolyORB.CORBA_P.CORBALOC 39
PolyORB.CORBA_P.Naming_Tools 40
PolyORB.CORBA_P.Server_Tools 42
PolyORB.RTCORBA_P.Setup 45
POLYORB_CONF . 12
Protocol personality. 9
Protocol personality, activation 13

R
Ravenscar . 11, 17
RT-CORBA . 9, 45
RTCORBA.PriorityMapping 46
RTCosScheduling Service . 47

S
SOAP . 10, 65
SSLIOP . 10, 57

T
Tasking model . 17
Tasking runtime . 17
Typographical conventions . 2

84 PolyORB User’s Guide

	About This Guide
	What This Guide Contains
	Conventions

	Introduction to PolyORB
	Distributed applications and middleware
	PolyORB a generic middleware with an instance per distribution model

	Installation
	Supported Platforms
	Build requirements
	Build instructions
	Additional instructions for cross platforms
	Building the documentation and PolyORB's examples
	Build Options
	Compiler, Tools and Run-Time libraries Options

	Platform notes

	Overview of PolyORB personalities
	Application personalities
	CORBA
	Distributed System Annex of Ada (DSA)
	Message Oriented Middleware for Ada (MOMA)
	Ada Web Server (AWS)

	Protocol personalities
	GIOP
	SOAP

	Building an application with PolyORB
	Compile-time configuration
	Tasking run-times
	Middleware tasking policies
	Sample files

	Run-time configuration
	Using a configuration file
	Using environment variables
	Using the command line

	Setting up protocol personalities
	Activating/Deactivating protocol personalities
	Configuring protocol personality preferences

	Activating debug information
	Tracing exceptions
	polyorb-config

	Tasking model in PolyORB
	PolyORB Tasking runtimes
	Full tasking runtime
	No tasking runtime
	Ravenscar tasking runtime

	PolyORB ORB Tasking policies
	No Tasking
	Thread Pool
	Thread Per Session
	Thread Per Request

	PolyORB Tasking configuration
	PolyORB ORB Controller policies
	No Tasking
	Workers
	Half Sync/Half Async
	Leader/Followers

	PolyORB ORB Controller configuration

	CORBA
	What you should know before Reading this section
	Installing CORBA application personality
	Usage of idlac
	Resolving names in a CORBA application
	po_cos_naming
	Registering the reference to the COS Naming server
	Using the COS Naming

	The CORBA Interface Repository
	po_ir
	Using the Interface Repository

	Building a CORBA application with PolyORB
	echo example
	IDL definition of an echo object
	Implementation code for the echo object
	Test code for client and server nodes
	Compilation and execution

	Other examples

	Configuring a CORBA application
	Configuring PolyORB
	Configuring GIOP protocol stack for PolyORB
	Configuring Security services for PolyORB
	Supported mechasnisms
	Compile-time configuration
	Run-time configuration

	Command line arguments

	Implementation Notes
	Tasking
	Implementation of CORBA specifications
	Additions to the CORBA specifications
	Interface repository
	Policy Domain Managers
	Mapping of exceptions
	Additional information to CORBA::Unknown
	Internals packages

	PolyORB's specific APIs
	PolyORB.CORBA_P.CORBALOC
	PolyORB.CORBA_P.Naming_Tools
	PolyORB.CORBA_P.Server_Tools

	RT-CORBA
	What you should know before Reading this section
	Installing RT-CORBA
	Configuring RT-CORBA
	PolyORB.RTCORBA_P.Setup

	RTCORBA.PriorityMapping
	RTCosScheduling Service
	Overview
	RTCosScheduling::ClientScheduler
	RTCosScheduling::ServerScheduler

	Ada Distributed System Annex (DSA)
	What you should know before Reading this section
	Installing DSA application personality
	A small example of a DSA application
	Building a DSA application with PolyORB
	Foreword
	Installing po_gnatdist
	Using po_gnatdist with PolyORB

	Running a DSA application
	Configuring a DSA application

	MOMA
	What you should know before Reading this section
	Installing MOMA application personality
	Package hierarchy

	Ada Web Server (AWS)
	GIOP
	Installing GIOP protocol personality
	GIOP Instances
	IIOP
	SSLIOP
	DIOP
	MIOP

	Configuring the GIOP personality
	Common configuration parameters
	IIOP Configuration Parameters
	SSLIOP Configuration Parameters
	Ciphers name
	SSLIOP Parameters

	DIOP Configuration Parameters
	MIOP Configuration Parameters

	Code sets
	Supported code sets
	Incompatibility in code set support
	Adding support for new code sets
	Character data Converter
	Converters factories
	Registering new code sets

	SOAP
	Installing SOAP protocol personality
	Configuring the SOAP personality

	Tools
	po_catref
	po_dumpir
	po_names

	Performance considerations
	Conformance to standards
	CORBA standards conformance
	CORBA IDL-to-Ada mapping
	CORBA Core
	CORBA Interoperability
	CORBA Interworking
	CORBA Quality Of Service
	CORBA COS Services
	CORBA Specialized services

	RT-CORBA standards conformance
	CSIv2 standards conformance
	CORBA/GIOP standards conformance
	SOAP standards conformance

	References
	GNU Free Documentation License
	Index

