
GNAT User’s Guide

Supplement for the .NET Platform

The GNU Ada Environment
GNAT Version gpl-2014

AdaCore

c© Copyright 1998-2007, AdaCore

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

About This Guide 1

About This Guide

This guide describes the features and the use of GNAT, the Ada development environment
for the .NET platform. This guide also explains how to use the .NET API from Ada and
how to interface Ada and the .NET framework.

Before reading this manual you should be familiar with the GNAT User’s Guide as a
thorough understanding of the concepts and notions explained there is needed to use GNAT
effectively.

What This Guide Contains

This guide contains the following chapters:

• Chapter 1 [Getting Started with GNAT for .NET], page 3, gives an overview of GNAT
and its tools and explains how to compile and run your first Ada program for the .NET
platform.

• Chapter 2 [Ada & .NET Interoperability], page 5, explains how the .NET API and the
services of any .NET class can be used from Ada. This section also explains how Ada
services can be exported to .NET programmers.

• Chapter 3 [Using the .NET API with cil2ada], page 7, describes the cil2ada interfacing
tool that takes any ‘.dll’ file as input and generates Ada package specs as output. The
resulting Ada specs can be used by Ada programs to interface to .NET.

• Chapter 4 [.NET-Specific Pragmas], page 9, explains some special pragmas that have
been introduced to support certain aspects of interfacing between Ada and .NET.

• Chapter 5 [Debugging Ada Programs], page 17, describes how to run and debug Ada
programs.

• Chapter 6 [Limitations], page 19, describes the language constructs, libraries and
switches that are not supported by GNAT under .NET.

What You Should Know Before Reading This Guide

Before reading this document readers should be familiar with the GNAT User’s Guide and
have a conceptual understanding of the .NET technology.

Related Information

For further information about GNAT, Ada, and the .NET technology, we recommend con-
sulting the following documents:

• GNAT User’s Guide contains introductory and reference material for the GNAT de-
velopment environment.

• Ada 2005 Language Reference Manual contains all reference material for the Ada 2005
programming language.

Conventions

Following are examples of the typographical and graphic conventions used in this guide:

• source code, and utility program names.

2 GNAT User’s Guide Supplement for the .NET Platform

• ‘Option flags’.

• ‘File Names’.

• Variables.

• Emphasis.

• [optional information or parameters]

• Examples are described by text
and then shown this way.

Commands that are entered by the user are preceded in this manual by the “$ ” characters
(dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some
other prompt, then the command will appear with the $ replaced by whatever prompt
character you are using.

Chapter 1: Getting Started with GNAT for .NET 3

1 Getting Started with GNAT for .NET

1.1 Overview

The .NET technology, introduced by Microsoft, is a paradigm whose goal is to add platform-
independent programming flexibility to applications and embedded devices such as con-
sumer electronics, smart cards, etc.

The .NET technology consists of a comprehensive set of libraries (.NET API), and
a virtual execution environment offering the same object code interface on all platforms
(bytecode).

The GNAT system offers an Ada programming environment for the .NET platform. In
addition to a bytecode compiler, binder and linker, GNAT contains a .NET-to-Ada-2005
binding generator that produces the Ada 2005 specs of the services contained in any .NET
‘.class’ file or API.

Furthermore, because the ‘.dll’ files generated by the GNAT compiler are fully com-
pliant with the CIL standard, the user can employ any .NET debugger to debug Ada code,
and can use any of the .NET tools that operate on ‘.dll’ files (e.g. ildasm, gacutil, etc.).

As a side note, the GNAT system is implemented in Ada 2005 and its sources are
available under the GPL.

1.2 GNAT Tools

Most tools are regular GNAT tools that have been slightly adapted for use with .NET.
They are used in the same fashion as their corresponding GNAT equivalent. These tools
are:

• dotnet-gnatmake: the GNAT automatic make program, determines the set of sources
needed by an Ada compilation unit and performs the necessary build commands (to
compile, bind, and link).

• dotnet-gnat: the GNAT project driver, calls other GNAT tools with projects.

• dotnet-gnatcompile: the GNAT compiler, compiles an Ada unit into one ‘.il’ file.
For compatibility with other platforms and some of the GNAT tools, the command
dotnet-gcc is equivalent to dotnet-gnatcompile.

• dotnet-gnatbind: the GNAT binder, generates an Ada source file containing the
elaboration code for the Ada application to run.

• dotnet-gnatlink: the GNAT linker, compiles the source file generated by dotnet-

gnatbind and generates an executable (by default), or a DLL when using the ‘/DLL’
switch.

• dotnet-gnatls: the GNAT library browser, displays information about compiled units,
including dependencies on the corresponding sources files, and consistency of compila-
tions.

• dotnet-gnatfind: the GNAT find utility, provides an easy way to locate the declara-
tion and references for an Ada entity.

• dotnet-gnatxref: the GNAT cross-referencer, generates a full report of all cross-
references in a given set of Ada units.

4 GNAT User’s Guide Supplement for the .NET Platform

• dotnet-gnatclean: cleans up compilation artifacts.

• dotnet-gnatelim: eliminates uncalled subprograms.

• dotnet-gnatmetric: computes metrics on Ada sources.

• dotnet-gnatname: generates project files for your source tree.

• dotnet-gnatpp: produces a pretty-printed version of Ada sources.

• dotnet-gnatprep: performs preprocessing.

• dotnet-gnatstub: generates body stubs from Ada specs.

• dotnet-gnatchop: splits a multi-unit source file into individual files, one compilation
unit per file.

• dotnet-gnatkr: “krunch”es GNAT names.

• dotnet-gnatcheck: checks coding style.

The following GNAT tools have been specifically developed for .NET:

• cil2ada: The GNAT interfacing tool, (see Chapter 3 [Using the .NET API with
cil2ada], page 7) takes ‘.dll’ files as input and generates Ada package specifications as
output. The resulting Ada package specs can be withed by Ada programs to interface
to .NET services.

1.3 .NET Development Kits compatible with GNAT

GNAT has been tested with the .NET 2.0 framework. It may also be compatible with other
frameworks, e.g. mono under GNU/Linux.

In order to use the GNAT toolset for .NET, you first need to install the .NET run-time
and SDK (e.g. ‘dotnetfx.exe’ and ‘setup.exe’ under Windows). The run-time should
come with any recent Windows version, while the SDK can generally be found either as
a standalone installer or as part of Microsoft Visual Studio or Microsoft Visual Studio
Express.

1.4 Compiling Your First Application with GNAT for .NET

To compile the following “Hello .NET” program put the following in file ‘hello.adb’:
with Ada.Text_IO; use Ada.Text_IO;

procedure Hello is

begin

Put_Line ("Hello .NET!");

end Hello;

then type:
$ dotnet-gnatmake hello

This command will generate file ‘hello.exe’. To run it, just type
$ hello

To compile more complex Ada applications use dotnet-gnatmake as usual. If you want
to use the GNAT compiler, binder, and linker separately, you will need to individually in-
voke the appropriate dotnet-gnatcompile, dotnet-gnatbind and dotnet-gnatlink com-
mands.

Chapter 2: Ada and .NET Interoperability 5

2 Ada and .NET Interoperability

An attractive aspect of .NET is its growing set of API classes. It is therefore fundamental
that the API be made available to the Ada programmer transparently. It is also important
for the Ada programmer to be able to write libraries or APIs for the .NET platform in
Ada, and that these libraries be easily usable in any .NET application. GNAT provides full
interoperability between Ada and .NET.

To achieve this goal, constructs that can appear in a .NET class at the specification
level are mapped to Ada either by means of a corresponding Ada feature or by using an
implementation-defined Ada pragma.

In addition, the mapping from .NET to Ada is completely automated. GNAT does not
include any Ada bindings for the .NET API, but instead provides a tool (see Chapter 3
[Using the .NET API with cil2ada], page 7) that can produce Ada specifications from any
.NET DLL.

2.1 Importing .NET Services to Ada

To access the services provided by the .NET API or by any set of ‘.dll’ files, you should
proceed as follows:

1. If your .NET code is in source form (e.g. C#), compile it using any .NET compiler.

2. If you just want to import a variable or a subprogram from a .NET class, use pragma

Import (see Section 4.2 [Pragma Import CIL], page 12) in the Ada code where you
want to import the .NET service.

3. More generally, you can use the cil2ada utility to produce the Ada specs (contain-
ing the appropriate .NET-specific pragmas) for the ‘.dll’, files containing the .NET
services you would like to use from Ada (see Chapter 3 [Using the .NET API with
cil2ada], page 7). Note that cil2ada preserves, in the generated Ada specs, the names
of the original .NET services.

4. with the needed Ada specs and use their services as usual.

You can see an example of an Ada program using the .NET framework
to display a window with menus and callbacks at ‘<GNAT Pro installation

dir>/share/examples/dotnet/CompactFramework’.

2.2 Exporting Ada Services to .NET

To export a set of Ada services to .NET you should:

1. Use pragma Export and other CIL interfacing pragmas inside the Ada code (see
Chapter 4 [.NET-Specific Pragmas], page 9). This gives you complete control of what
is being generated and allows you to decide very precisely what the exported services
look like on the .NET side.

2. Create a library containing you compiled Ada code.

Note that there is for now no direct support of .NET libraries generation in the project
files. Instead, you need to specify:

• -z as builder switch (no main procedure, to perform bind/link steps even if no
main is specified)

6 GNAT User’s Guide Supplement for the .NET Platform

• -n as binder switch (no main entry point)

• /dll as linker switch (instruct the linker to produce a dll)

• force the generated library name to use a ‘.dll’ suffix (by default, it will have a
.exe extension)

For example, here is a simple project file to generate a library from all the sources used
by library.adb:

project Library1 is

for Main use ("library.adb");

for Object_Dir use "obj";

package Builder is

for Executable_Suffix use ".dll";

for Default_Switches ("ada") use ("-z");

end Builder;

package Binder is

for Default_Switches ("ada") use ("-n");

end Binder;

package Linker is

for Default_Switches ("ada") use ("/DLL");

end Linker;

end Library1;

You can automatically create such a project from Visual Studio, by creating a new
project using the ’library Ada Project’ template, or you can look at the ‘<GNAT Pro

installation dir>/share/examples/dotnet/MixedLanguages/’ example where the
‘AdaLib’ subdirectory contains a project creating an Ada library.

3. Add a reference to this library from the .NET project, and call the library elaboration
routine before calling any of its services. The elaboration routine is contained in a
special namespace ada_<library_name_in_lowercase>_pkg and is called adainit,
e.g: ada_lib1_pkg::adainit. After using the library, you may also need to manually
call adafinal to finalize any objects created on the Ada side.

4. Call the ada methods contained in the library using their underlying CIL naming
scheme: all Ada names are translated to lower case, and the last package name re-
ceives a _pkg suffix (for example, the package Foo.Adapackage will be named in CIL
foo.adapackage_pkg). You can easily verify the naming scheme by looking at the
compiled files (with ‘.il’ extension) located in the object directory: these are text files
that can be read by any text editor or IDE.

You can see an example of C# program using Ada services in ‘<GNAT Pro installation

dir>/share/examples/dotnet/MixedLanguages/’

Chapter 3: Using the .NET API with cil2ada 7

3 Using the .NET API with cil2ada

The cil2ada tool takes ‘.dll’ files as input and generates Ada specs as output.

3.1 Running cil2ada

The form of the cil2ada command is
cil2ada [options] file

Where file is either a DLL containing .NET APIs, or an assembly name (e.g.
System.Windows.Form, mscorlib, etc.). File names may be prefixed with directory
information.

The output of cil2ada is an Ada source file for each ‘class’ processed. The Ada source
file contains a package spec giving the Ada declaration for the services exported by the
corresponding ‘class’.

The Ada files generated are placed in the directory where the cil2ada command is
invoked, or in the subdiretory specified via the -o option.

3.2 Switches for cil2ada

The following switches are available with the cil2ada utility:

-compact Search assemblies from the .NET compact framework repository

-h Displays the help message and exits

-o name Create the files in the specified output directory.

-q, -quiet

Quiet mode

-r Perform also the analysis of the referenced assemblies.

-V, --version

Displays the tool’s version and exits

3.3 Running cil2ada on the .NET API

To be able to access the .NET API you need to use cil2ada to generate an Ada package
spec for each public class in the API.

$ cd some-dir

$ cil2ada mscorlib -o bindings

This will create, in directory some-dir/bindings, an Ada package spec for each public .NET
class included in ‘mscorlib’ (the default .NET library).

Chapter 4: .NET-Specific Pragmas 9

4 .NET-Specific Pragmas

The simplest way to import services from .NET classes is to use the cil2ada tool to au-
tomatically generate the specification of the corresponding ‘.class’ file. The resulting
specification contains the appropriate .NET-specific pragmas.

Sometimes, however, interfacing between .NET and Ada requires more fine-grained con-
trol. For example;

• Importing just one routine into your Ada code,

• Grouping certain services from multiple ‘.class’ files into a single Ada spec (for in-
stance to provide a simplified view of the .NET API),

• Exporting Ada services to .NET.

This chapter explains the features and pragmas that are needed for full support of interfacing
between .NET and Ada.

4.1 The CIL_Constructor Pragma

4.1.1 Background on .NET Constructors

A .NET constructor is a special method that must be invoked immediately after allocating
an object, in order to initialize the object. Given the following .NET class:

public class C {

public int field;

public C () { field = 3; }

public C (int i) { field = i; }

}

then the statement C obj = new C (3) accomplishes two things:

1. It allocates a new instance of class C in the .NET heap and sets obj to point to this
object;

2. It then calls the constructor that takes an int parameter, passing obj to it as a hidden
parameter and the value 3 for its int parameter.

If no constructor is provided, as in the following class:

class D extends C {

float f;

}

then a default constructor

public D () {

super ();

}

is automatically generated for class D. The call of super() inside this default constructor
(known as a no-arg constructor) invokes the no-arg constructor of the superclass of D, that
is, the constructor of class C.

Generally speaking, the first statement of every constructor must either be a call to
another constructor of the class, or a call to a constructor of the superclass. For instance,
given a constructor

10 GNAT User’s Guide Supplement for the .NET Platform

public C (int i, int j) { this (i + j); }

The call this (i + j) invokes the constructor in class C that takes an int as its parameter.
As another example, consider:

public D (int k) { super (k); }

Here super (k) invokes the constructor from D’s superclass that takes an int as its param-
eter.

Note that in both of the original constructors of class C, there are no calls to either
this (...) or super (...). When no such call is explicitly given, the .NET compiler
automatically inserts a call to the no-arg constructor of the superclass. If (as will be
explained below) the superclass does not have an accessible no-arg constructor then you
must explicitly insert a call to a constructor from either the same class or its superclass.

As just noted, a class might not have an accessible no-arg constructor. This can occur
only when explicit constructors are defined in the class. In this case, the no-arg constructor
is not automatically generated for the class, and if a no-arg constructor is desired, you must
add it explicitly. For instance, in the following class:

public class A {

int ival;

public A (int i) { ival = i; }

}

public class B extends A {

float fval;

public B (float f) { fval = f; }

}

the .NET compiler will issue a compile-time error reporting that no constructor matching A

() was found in class A, because the compiler tries to insert such a call at the beginning of
B. To correct this problem the .NET programmer must either add a no-arg constructor A ()

in class A, or else change the definition of B’s constructor to contain an explicit constructor,
e.g., as follows:

public B (float f) {

super (0);

fval = f;

}

A similar situation may arise when the superclass contains a no-arg constructor that is not
accessible in the subclass. For example:

public class A {

int ival;

public A (int i) { ival = i; }

private A () { ival = 0; }

}

public class B extends A {

float fval;

public B (float f) { fval = f; }

}

This will generate the same error as above: the private no-arg constructor from A cannot be
legally invoked from B, and thus the compiler’s attempt to implicitly place the call super()
as the first statement in B’s constructor will fail.

Chapter 4: .NET-Specific Pragmas 11

4.1.2 Using .NET Constructors in Ada

To map an Ada function function-name to a .NET constructor for some Ada tagged-type,
GNAT provides the CIL_Constructor pragma. Its syntax is as follows:

pragma CIL_Constructor (function-name);

where function-name is the name of a function declared immediately within the same declar-
ative part where the pragma occurs. The function must satisfy the following requirements:

• The function’s result type is an access type designating a class-wide type with con-
vention CIL declared at the same declarative level as the function (access tagged-

type’Class);

• The first function parameter is named This, and its type is a named access type
designating tagged-type’Class which may have a null default value;

• If the constructor invokes other constructor then the first declaration in the function
body is an object declaration with a default initial expression of the form constructor-

func (..., This), where the constructor-func is a CIL_Constructor function belong-
ing either to tagged-type or to the parent type of tagged-type;

The effect of a CIL_Constructor pragma is to compile function-name into a constructor
for the class corresponding to tagged-type. In addition, whenever function-name is invoked
with a null value for parameter This, the compiler calls the tagged-type object allocator
and passes in the pointer to the newly allocated object instead of the value null.

A CIL_Constructor pragma is a program unit pragma. It can appear in the same places
where an Inline pragma for function-name can appear. The CIL_Constructor pragma
applies to all the overloaded function-name subprograms declared immediately within the
declarative region containing the pragma.

For examples of use of this pragma, see the packages generated by cil2ada.

4.1.3 .NET Constructors and Ada Allocators

If an Ada function has been defined as a no-arg constructor (via pragma CIL_Constructor)
then it is implicitly invoked during the evaluation of an Ada allocator. For instance a client
of package C given in the previous section could write:

with C;

procedure Client is

Obj_1 : C.Ref := new_C;

Obj_2 : C.Ref := new C.Typ; -- allocator

In compiling new C.Typ, GNAT generates a call of the no-arg constructor if present (in
the example new_C (This : Ref := null)). If there is no no-arg constructor then GNAT
reports an error. (This last check is not supported as of September 2007, and an exception
is raised at run time).

12 GNAT User’s Guide Supplement for the .NET Platform

4.2 Pragma Import CIL

For convention CIL, pragma Import has the following syntax:

pragma Import ([Convention =>] CIL,

[Entity =>] Local_Name

[,[External_Name =>] String_Expression]);

where Local Name is the name of an object, subprogram, record component, exception, or
package, while String Expression is a string giving the .NET name of the imported entity.
If String Expression is missing it is taken to be the Local Name, folded to lower case.

4.2.1 Importing Packages

If the Local Name of an Import pragma is the name of a package spec P, then all the
entities declared in P must be explicitly imported from .NET. The String Expression of
such an Import pragma gives the name of the .NET class corresponding to P and can be a
simple class name or it can have the form namespace.class name.

The following rules apply when importing a package P:

• All the entities declared inside P must be imported either by means of the Import

pragma or by using other .NET-specific pragmas.

• P must declare at most one tagged or untagged record type, and this type’s name must
be Typ. Typ models the record part of the class corresponding to P.

• P must not contain task types or protected types.

• The String Expression of the Import pragma for an object, subprogram, or record
component declared in P must be a simple name (it cannot contain any “.” characters).

• Each package (if any) nested within P must itself contain an Import pragma (and the
above rules apply recursively).

The following example illustrates these rules:

package MSSyst.Object is

pragma Preelaborate;

type Typ (<>) is tagged limited private;

type Ref is access all Typ;

type Ref_Class is access all Typ’Class;

function new_Object (This : Ref := null) return Ref;

function Equals

(This : access Typ;

obj : access MSSyst.Object.Typ’Class) return Standard.Boolean;

private

type Typ is tagged limited null record;

pragma Convention (CIL, Typ);

pragma Cil_Constructor (new_Object);

pragma Import (CIL, Equals, "Equals");

end MSSyst.Object;

pragma Import (CIL, Object, "[mscorlib]System.Object");

Chapter 4: .NET-Specific Pragmas 13

4.2.2 Importing Exceptions

If the Local Name of an Import pragma is the name of an exception E, the
String Expression of such an Import pragma gives the name of the class corresponding to
E. This can be a simple class name or it can have the form namespace name.class name
(which says that the class class name corresponding to E belongs to the namespace
namespace name).

When importing an exception you should make sure that the imported class is indeed a
.NET exception, i.e. it derives from System.SystemException.

4.2.3 Importing Record Components

If the Local Name of an Import pragma is the name of a record field, then the record field
must be declared in a record whose convention is CIL and the record must be declared in
a package specification which is itself imported. In this case String Expression must be a
simple name (i.e. contains no dots) giving the name of the imported field.

4.2.4 Importing Dispatching Subprograms

If the Local Name of an Import pragma is the name of a dispatching subprogram (i.e., a
primitive operation of a tagged type), then the subprogram must be declared in a package
specification which is itself imported. In this case String Expression must be a simple name
(i.e. contains no dots) giving the name of the imported subprogram.

4.2.5 Importing Objects

If the Local Name of an Import pragma is the name of an object and the object is declared
in a package specification which is itself imported, then the String Expression must be a
simple name (i.e. contains no dots) giving the name of the imported .NET static field.

An Import pragma for an object can be given even though such an entity does not occur
in a package spec with an Import pragma. In this case the String Expression of the Import
pragma must give the complete .NET name of the imported entity, as shown in the following
example:

procedure Foo is

Var : Integer;

pragma Import (CIL, Var, "pack.Foo.the_var");

begin

Var := 3;

end Foo;

4.2.6 Importing Non-Dispatching Subprograms

If the Local Name of an Import pragma is the name of a non-dispatching subprogram and
the subprogram is declared in a package specification which is itself imported, then the
String Expression must be a simple name (i.e. contains no dots) giving the name of the
imported .NET static method.

An Import pragma for a non-dispatching subprogram can be given even though such
an entity does not occur in a package spec with an Import pragma. In this case the
String Expression of the Import pragma must give the complete .NET name of the imported
entity as shown in the following example:

14 GNAT User’s Guide Supplement for the .NET Platform

procedure Foo is

X : Integer;

function Compute (I : Integer) return Integer;

pragma Import (CIL, Compute, "pack.Bar.calc");

begin

X := Compute (3);

end Foo;

4.2.7 Importing Delegates

Starting with GNAT 6.2, access-to-subprograms Ada types and .NET delegates now per-
fectly match. As a result, an access-to-subprogram type can now be directly imported from
a .NET delegate.

An Import pragma for an access-to-subprogram can be given even though such an entity
does not occur in a package spec with an Import pragma. In this case the String Expression
of the Import pragma must give the complete .NET name of the imported entity as shown
in the following example:

procedure Foo is

-- This defines the delegate type, that matches pack.Bar.some_delegate_type

type CB_Type is access procedure (Arg : Integer);

pragma Import (CIL, CB, "pack.Bar.some_delegate_type");

-- Let’s import a method asking for such delegate as input.

procedure Fn_Using_Delegate (CB : CB_Type);

pragma Import (CIL, Fn_Using_Delegate, "pack.Bar.some_method");

-- Our actual callback, full Ada

procedure Bar (Arg : Integer);

begin

-- We can now call the external .NET method with our full Ada Bar callback.

Fn_Using_Delegate (Bar’Access);

end Foo;

Note that this behavior changed in GNAT 6.2. In previous versions, .NET delegates
were treated as objects, and could only be imported as such.

4.3 Pragma Export CIL

In the absence of pragma Export, the name of any Ada object, field, or subprogram compiled
into a class file is the name of the corresponding Ada entity folded to lower-case.

For exceptions, record types, and packages, the names of the generated class files are all
folded to lower case.

By using pragma Export you can change the default name that is generated by the
GNAT compiler. In addition, for Ada packages the pragma can also specify which .NET
package they belong to. For convention CIL, the pragma Export has the following syntax:

pragma Export ([Convention =>] CIL,

[Entity =>] Local_Name

[,[External_Name =>] String_Expression]);

where Local Name is the name of an object, subprogram, record component, record type,
exception, or package, and String Expression is a string giving the CIL name of the exported
entity. If String Expression is missing it is taken to be the Local Name, folded to lower-case.

Chapter 4: .NET-Specific Pragmas 15

4.3.1 Exporting Objects, Subprograms, and Record Components

NOTE: Exporting of record components is not yet supported.

If the Local Name of an Export pragma is the name of an object, record component, or
subprogram (but not a top-level subprogram), String Expression must be a simple name
(i.e., it contains no dots), giving the name of the corresponding entity at the CIL level.
Here is an example:

package C is

type Typ is tagged record

Field : Integer;

pragma Export(CIL, Field, "THE_FIELD");

end record;

function Instance_Op (This : access Typ; I : Integer) return Integer;

Var : Integer;

function Op (J : Integer) return Integer;

private

pragma Export (CIL, Instance_Op, "dispatch_op");

pragma Export (CIL, Var, "the_var");

end C;

This is interpreted as the following two class specifications at the CIL level:
public class c {

public static int the_var;

public static int op (int j);

}

public class c$typ {

public int THE_FIELD;

public int dispatch_op (int i) {...}

}

Note that when exporting an object, subprogram, or record component you cannot specify
its class, as this is determined by the compiler.

4.3.2 Exporting Exceptions

If the Local Name of an Export pragma is the name of an exception E, then the
String Expression of such an Export pragma gives the name of the generated class for
the Ada exception, overriding the name that would have been given by the compiler.
String Expression can be a simple class name, or it can have the form

namespace_name.class_name

indicating that the generated class belongs to .NET package namespace name.

Care must be taken not to use the same class name for two Ada exceptions, packages or
record types when they belong to different source files located in the same directory, since
one ‘.class’ file would overwrite the other.

4.3.3 Exporting Record Types

If the Local Name of an Export pragma is the name of a record type P, then the
String Expression of such an Export pragma gives the name of the generated .NET class,
overriding the name that would have been given by the compiler. String Expression can
be a simple class name, or it can have the form namespace name.class name.

16 GNAT User’s Guide Supplement for the .NET Platform

Care must be taken not to use the same class name for two Ada exceptions or record
types when they belong to different source files located in the same directory.

Chapter 5: Debugging Ada Programs 17

5 Debugging Ada Programs

Because GNAT generates DLLs and executables that are fully compliant with the .NET
framework, you can use any .NET debugger (e.g. Visual Studio), with GNAT. However,
in order to use such a debugger on Ada constructs that are not directly available in CIL
(e.g. attributes), you need to know how GNAT compiles these into bytecode.

This chapter explains the correspondence between Ada features and bytecode. It is not
a complete description; if you need to understand the output of the GNAT compiler for a
particular Ada construct that is not documented below, you can inspect the assembly code
generated by GNAT (‘.il’ file).

5.1 Ada Compilation Units

Unless pragma Export is used (see Section 4.3 [Pragma Export CIL], page 14), the names of
all classes generated from the compilation of an Ada unit are folded to lower case. Similarly
for the names of all of the entities generated inside a class file.

The compilation of a nongeneric Ada library unit P always generates an assembly file
‘p.il’ containing a p_pkg class.

A package Q nested inside an Ada unit P does not result in a separate class. Entities de-
clared within the nested package will generally be associated as members of the containing
library package’s class. However, the names of the corresponding fields and methods result-
ing from the nested package will be given expanded names that include the name of the
outermost library package followed by the names of any enclosing nested packages. Adjacent
pairs of simple names in the expansion are separated by an underscore (e.g., ‘p_q_proc’).

A child unit P.Q is compiled into a .NET class p.q pkg. All the rules described here are
applied recursively with respect to Q’s contents.

A generic package instantiation R nested inside an Ada unit P is treated exactly like a
nested package.

A generic subprogram instantiation S nested inside an Ada unit P treated exactly like a
nested subprogram.

A subprogram N nested inside another subprogram P will be treated as a static method
of the enclosing library unit’s class and will be given an expanded name that includes the
names of any enclosing subprograms (e.g., ‘pkg_p_n’). In addition, a special class will be
generated for the nested subprogram’s enclosing subprogram to contain fields for any objects
of the enclosing subprogram that are referenced by the nested subprogram. The name of
this special Activation Record class is constructed by appending the prefix ‘__AR_’ to the
name of the enclosing subprogram (e.g., ‘__AR_pkg_p’).

5.2 Lexical Elements

Letters in all Ada identifiers in user code are folded into lower case when generating symbolic
references for .NET, unless pragma Export is used. However, certain names corresponding
to internal entities generated by the GNAT front end may include upper-case letters. These
can be seen using the -gnatG or -gnatD switches.

18 GNAT User’s Guide Supplement for the .NET Platform

5.3 Enumeration Types

An Ada enumeration type is converted into a .NET 1-byte, 2-byte, 4-byte or 8-byte integer
whose size best matches the value of the largest enumeration literal.

Character types are treated like regular Ada enumeration types. More specifically, the
Ada Character type is mapped to a .NET byte, and the Ada Wide_Character type is
mapped to the equivalent 2-byte .NET char type.

An Ada Boolean type is treated like a standard Ada enumeration type with 2 values and
is consequently mapped into a .NET byte.

5.4 Integer Types

Each signed integer type is mapped to the smallest corresponding .NET integer type whose
size is able to represent all required integer values:

Ada type .NET type
Short_Short_Integer byte (1 byte)
Short_Integer short (2 bytes)
Integer int (4 bytes)
Long_Integer long (8 bytes)
Long_Long_Integer long (8 bytes)

Each modular type is also mapped to the smallest corresponding .NET integer type whose
size is able to represent all required modular values.

5.5 Floating Point Types

The Ada predefined floating point types map very naturally onto .NET’s IEEE 32-bit float
and IEEE 64-bit double:

Ada type .NET type
Short_Float float (4 bytes)
Float float (4 bytes)
Long_Float double (8 bytes)
Long_Long_Float double (8 bytes)

User-defined floating point types are mapped into Float where possible, and Long_Float

otherwise.

Chapter 6: Limitations 19

6 Limitations

Due to constraints of the .NET environment, or to implementation limitations, GNAT for
.NET only supports a subset of the Ada language and GNAT run-time.

Language constructs not supported (where noted, partial support is provided):

• Types imported from .NET do not support enumeration attributes (e.g. ’Image)

• Exception streams and attributes

• Representation items (13.1)

• pragma Pack (ignored) (13.2)

• Representation attributes (13.3)

• Record layout (13.5)

• Machine Code Insertions (13.8)

• Unchecked_Conversion between different non scalar types (13.9)

• Limited support on Ada.Streams package (13.13)

• ’Size attribute on non scalar objects

• ’Storage_Size attribute on non-task objects

• ’First_Bit, ’Last_Bit, ’Position attributes

• ’External_Tag attribute

• ’Pred, ’Succ attribute for modular types

• ’Version and ’Body_Version attributes

• Limited support of the ’Val attribute

• Function returning unconstrained array will have wrong ’First and ’Last

• User-defined Storage Pools

• Limited support for controlled types

• ’Address on non-aliased, non-local objects

• System.Address comparisons, other than "=" and "/="

• Some forms of scalar object renaming (e.g. renaming of dereferenced access value)

• Pragmas Import, Export, and Convention other than Ada and CIL

• Pragma Interrupt_Handler, Attach_Handler

• Asynchronous abort of tasking constructs and tasks

• Access-to-protected-subprogram types

• Incomplete types completed in package bodies

• Stack overflows cannot be caught. (e.g ACATS test cb1010c & cb1010d) This
limitation comes with .NET 2.0, which does not allow an application to catch the
StackOverflowException.

• Wide_String and Wide_Wide_String (e.g. ACATS test c250001)

• Null arrays with multiple dimensions

Switches not supported:

• -gnatE (dynamic elaboration)

20 GNAT User’s Guide Supplement for the .NET Platform

Run-time units not supported yet, which will be available in the future:

• Ada.Directories

Run-time units not supported:

• Ada.Sequential IO.C Streams, Ada.Storage IO, Ada.Text IO.C Streams,
Ada.Wide Text IO.C Streams, Ada.Direct IO.C Streams

• Ada.Real Time.Timing Events

• Ada.Asynchronous Task Control

• Ada.Command Line.Environment

• Ada.Exceptions.Traceback

• Ada.Interrupts,

• Ada.Task Attributes,

• Ada.Task Termination,

• Interfaces.C.Extensions, Interfaces.Cobol, Interfaces.C.Pointers, Interfaces.CPP, Inter-
faces.C.Strings, Interfaces.Fortran, Interfaces.Packed Decimal

• Machine Code, System.Machine Code

• GNAT.Altivec

• GNAT.Array Split

• GNAT.Lock Files, GNAT.Socket

• GNAT.Exceptions, GNAT.Expect, GNAT.AWK, GNAT.CGI, GNAT.CRC32,
GNAT.MD5, GNAT.SHA1, GNAT.Spitbol

• GNAT.Byte Swapping

• GNAT.Calendar

• GNAT.Command Line

• GNAT.Compiler Version

• GNAT.Current Exception, GNAT.Debug Pools, GNAT.Debug Utilities,
GNAT.Exception Actions, GNAT.Exception Traces, GNAT.Memory Dump

• GNAT.Dynamic Tables

• GNAT.Float Control

• GNAT.OS Lib is only partially supported

• GNAT.Perfect Hash Generators

• GNAT.Secondary Stack Info

• GNAT.Table,

• GNAT.Task Stack Usage,

• GNAT.Time Stamp

• GNAT.Thread, GNAT.Signal

• GNAT.String Split, GNAT.Wide String Split, GNAT.Wide Wide String Split
GNAT.Traceback

i

Table of Contents

About This Guide . 1
What This Guide Contains . 1
What You Should Know Before Reading This Guide 1
Related Information . 1
Conventions . 1

1 Getting Started with GNAT for .NET 3
1.1 Overview . 3
1.2 GNAT Tools . 3
1.3 .NET Development Kits compatible with GNAT 4
1.4 Compiling Your First Application with GNAT for .NET 4

2 Ada and .NET Interoperability 5
2.1 Importing .NET Services to Ada . 5
2.2 Exporting Ada Services to .NET . 5

3 Using the .NET API with cil2ada 7
3.1 Running cil2ada . 7
3.2 Switches for cil2ada . 7
3.3 Running cil2ada on the .NET API . 7

4 .NET-Specific Pragmas . 9
4.1 The CIL_Constructor Pragma . 9

4.1.1 Background on .NET Constructors . 9
4.1.2 Using .NET Constructors in Ada . 11
4.1.3 .NET Constructors and Ada Allocators 11

4.2 Pragma Import CIL . 12
4.2.1 Importing Packages . 12
4.2.2 Importing Exceptions . 13
4.2.3 Importing Record Components . 13
4.2.4 Importing Dispatching Subprograms . 13
4.2.5 Importing Objects . 13
4.2.6 Importing Non-Dispatching Subprograms 13
4.2.7 Importing Delegates . 14

4.3 Pragma Export CIL . 14
4.3.1 Exporting Objects, Subprograms, and Record Components

. 15
4.3.2 Exporting Exceptions . 15
4.3.3 Exporting Record Types . 15

ii GNAT User’s Guide Supplement for the .NET Platform

5 Debugging Ada Programs . 17
5.1 Ada Compilation Units . 17
5.2 Lexical Elements . 17
5.3 Enumeration Types . 18
5.4 Integer Types . 18
5.5 Floating Point Types . 18

6 Limitations . 19

	About This Guide
	What This Guide Contains
	What You Should Know Before Reading This Guide
	Related Information
	Conventions

	Getting Started with GNAT for .NET
	Overview
	GNAT Tools
	.NET Development Kits compatible with GNAT
	Compiling Your First Application with GNAT for .NET

	Ada and .NET Interoperability
	Importing .NET Services to Ada
	Exporting Ada Services to .NET

	Using the .NET API with cil2ada
	Running cil2ada
	Switches for cil2ada
	Running cil2ada on the .NET API

	.NET-Specific Pragmas
	The CIL_Constructor Pragma
	Background on .NET Constructors
	Using .NET Constructors in Ada
	.NET Constructors and Ada Allocators

	Pragma Import CIL
	Importing Packages
	Importing Exceptions
	Importing Record Components
	Importing Dispatching Subprograms
	Importing Objects
	Importing Non-Dispatching Subprograms
	Importing Delegates

	Pragma Export CIL
	Exporting Objects, Subprograms, and Record Components
	Exporting Exceptions
	Exporting Record Types

	Debugging Ada Programs
	Ada Compilation Units
	Lexical Elements
	Enumeration Types
	Integer Types
	Floating Point Types

	Limitations

