
GNAT User’s Guide

Supplement for the JVM Platform

The GNU Ada Environment
GNAT Version gpl-2014

AdaCore

c© Copyright 1998-2008, AdaCore

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Java is a trademark of Sun Microsystems, Inc.

About This Guide 1

About This Guide

This guide describes the features and the use of GNAT for the JVM, the Ada development
environment for the Java platform. This guide also explains how to use the Java API from
Ada and how to interface Ada and the Java programming language.

Before reading this manual you should be familiar with the GNAT User Guide as a
thorough understanding of the concepts and notions explained there is needed to use GNAT
effectively.

What This Guide Contains

This guide contains the following chapters:

• Chapter 1 [Getting Started with GNAT for the JVM], page 3, gives an overview of
GNAT and its tools and explains how to compile and run your first Ada program for
the Java platform.

• Chapter 2 [Ada & Java Interoperability], page 7 explains how the Java API and the
services of any JVM class can be used from Ada. This section also explains how Ada
services can be exported to Java programmers.

• Chapter 3 [Viewing Class Files with jvmlist], page 9, describes jvmlist, a utility to
disassemble a JVM .class file to view its contents: bytecode, contant pool (i.e. symbol
table), debugging info, etc. This utility can also embed the original source code into
the assembly listing.

• Chapter 4 [Stripping Debug Info with jvmstrip], page 11, describes jvmstrip a utility
that strips a .class file, removing all of its debugging info to reduce the file size.

• Chapter 5 [Building Archives with jarmake], page 13, describes the jarmake tool to
make a single ‘.jar’ file for an application built with GNAT. This is useful when you
want to ship a self-contained application built with GNAT to someone who does not
have GNAT installed. This tool is very useful useful when creating "gnapplets" (GNAT
applets, see Chapter 9 [Creating Gnapplets with GNAT], page 49).

• Chapter 6 [Using the Java API with jvm2ada], page 15, describes the jvm2ada inter-
facing tool that takes any JVM ‘.class’, ‘.zip’ or ‘.jar’ files as input and generates
Ada package specs as output. The resulting Ada specs can be used by Ada programs
to interface to Java.

• Chapter 7 [Java-Specific Pragmas], page 19 explains some special pragmas that have
been introduced to support certain aspects of interfacing between Ada and Java.

• Chapter 8 [Mapping Java into Ada], page 33 gives details on how the Java API and,
in general, any Java class spec is mapped into an Ada package specification by the
jvm2ada tool.

• Chapter 9 [Creating Gnapplets with GNAT], page 49, explains how you can create
“gnapplets” (GNAT applets).

• Chapter 10 [Debugging Ada Programs], page 53, describes how to run and debug Ada
programs.

• Chapter 11 [Limitations], page 57, describes the language constructs, libraries and
switches that are not supported by GNAT for the JVM.

2 GNAT User’s Guide Supplement for the JVM Platform

What You Should Know Before Reading This Guide

Before reading this document readers should be familiar with the GNAT User Guide and
have a conceptual understanding of the Java technology.

Related Information

For further information about GNAT, Ada, and the Java technology, we recommend con-
sulting the following documents:

• GNAT User Guide, contains introductory and reference material for the GNAT devel-
opment environemnt.

• Ada 2005 Language Reference Manual, contains all reference material for the Ada
programming language.

• The Java Tutorial: Object-Oriented Programming for the Internet, 2nd edition, by
Mary Campione and Kathy Walrath, published by Addison Wesley.

• The Java Virtual Machine Specification, by Tim Lindholm and Frank Yellin, published
by Addison Wesley.

Conventions

Following are examples of the typographical and graphic conventions used in this guide:

• source code, and utility program names.

• ‘Option flags’.

• ‘File Names’.

• Variables.

• Emphasis.

• [optional information or parameters]

• Examples are described by text
and then shown this way.

Commands that are entered by the user are preceded in this manual by the "$ " characters
(dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some
other prompt, then the command will appear with the $ replaced by whatever prompt
character you are using.

Chapter 1: Getting Started with GNAT for the JVM 3

1 Getting Started with GNAT for the JVM

1.1 Overview

The Java(TM) technology, introduced by Sun Microsystems, is a paradigm whose goal is
to add platform-independent programming flexibility to Internet, Intranet and Extranet
applications, embedded devices such as Internet appliances, consumer electronics, smart
cards, etc.

The Java technology comprises, a simple object-oriented programming language (Java),
a comprehensive set of libraries (Java API), and a virtual machine (JVM) offering the same
object code interface on all platforms (bytecode).

Although the Java environment comes with a default programming language, this lan-
guage is not a fundamental component of the technology. Any programming language that
can be mapped onto the JVM can be used to develop Java applications.

The GNAT system offers an Ada 2005 programming environment for the Java platform.
In addition to a bytecode compiler, binder and linker, GNAT comprises a Java-to-Ada
binding generator which produces the Ada 2005 specs of the services contained in any
Java ‘.class’ file or API. In addition to all of the conventional GNAT tools, a bytecode
disassembler and a ‘.class’ file stripper are also provided with GNAT for the JVM.

Furthermore, because the ‘.class’ files generated by the GNAT compiler are fully com-
pliant with Sun’s standard, the user can employ any JVM to run Ada applications, any JVM
debugger to debug Ada code, and can use any of the Java tools that operate on ‘.class’
files (e.g. jar, javap, etc.).

As a side note, the GNAT system is implemented in Ada and its sources are available
under the GPL.

1.2 GNAT Tools

Most tools are regular GNAT tools that have been slightly adapted for use with GNAT
for the JVM. They are used in the same fashion as their corresponding GNAT equivalent.
These tools are:

• jvm-gnatcompile: the compiler, compiles an Ada unit into one or more JVM ‘.class’
files.

• jvm-gnatbind: the binder, generates an Ada source file containing the elaboration
code for the Ada application to run.

• jvm-gnatlink: the linker, compiles the source file generated by jvm-gnatbind. jvm-

gnatlink provides no linking capabilities since the linker is directly embedded into the
JVM. To gather the ‘.class’ files of an application into a single file, one can use the
zip or jar commands provided with your Java Development Kit.

• jvm-gnatmake: the automatic make program, automatically determines the set of
sources needed by an Ada compilation unit, and executes the necessary compilations,
binding, and link.

• jvm-gnatls: the library browser, displays information about compiled units, including
dependences on the corresponding sources files, and consistency of compilations.

4 GNAT User’s Guide Supplement for the JVM Platform

• jvm-gnatfind: the find utility, provides an easy way to locate the declaration and
references for an Ada entity.

• jvm-gnatxref: the cross-referencer, allows you to generate a full report of all cross-
references in a given set of Ada units.

The GNAT tools which have been specifically developed for the JVM are:

• jvmlist: The GNAT disassembler, (see Chapter 3 [Viewing Class Files with jvmlist],
page 9) disassembles a JVM .class file to view its contents: bytecode, constant pool
(i.e., symbol table), debugging info, etc. This utility will also embed the original source
code into the assembly listing. This utility is independent of the original programming
language and works equally well on programs containing a mixture of Ada and Java
code.

• jvmstrip: The GNAT strip utility, (see Chapter 4 [Stripping Debug Info with jvm-
strip], page 11) is a utility that strips a .class file, removing all of its debugging info
to reduce file size. This tool is also programming-language independent.

• jarmake: The GNAT archiver tool, (see Chapter 5 [Building Archives with jarmake],
page 13) takes ‘.class’ files as input and recursively collects into an uncompressed zip
archive all the ‘.class’ files needed by the ‘.class’ files specified on the command
line. This tool can be used to prepare self-standing applications or gnapplets that you
can ship. This tool is programming-language independent.

• jvm2ada: The GNAT interfacing tool, (see Chapter 6 [Using the Java API with
jvm2ada], page 15) takes ‘.class’ files, or zip archives as input and generates Ada
package specifications as output. The resulting Ada package specs can be with-ed by
Ada programs to interface to Java services.

1.3 Java Development Kits that you can use with GNAT

Because GNAT generates class files that are fully compliant with Sun’s JVM standard, you
can use any Java Virtual Machine and bytecode tools that meet the Sun Java platform
standard.

1.4 Compiling Your First Application with GNAT

To compile the following “Hello GNAT for the JVM” program put the following in file
‘hello.adb’:

with Ada.Text_IO; use Ada.Text_IO;

procedure Hello is

begin

Put_Line ("Hello GNAT for the JVM.");

end Hello;

then type:
$ jvm-gnatmake hello

This command will generate file ‘hello.class’. To run it, assuming you are using Sun’s
JDK (Java Development Kit), you can just type

$ java hello

It’s as simple as that. To compile more complex Ada applications use jvm-gnatmake as
usual. If you want to use the GNAT compiler, binder, and linker separately, you will need to

Chapter 1: Getting Started with GNAT for the JVM 5

individually invoke the appropriate jvm-gnatcompile, jvm-gnatbind and jvm-gnatlink

commands.

Chapter 2: Ada & Java Interoperability 7

2 Ada & Java Interoperability

One aspect of Java that makes it an interesting platform is its growing set of API classes. It is
therefore fundamental that the API be made available to the Ada programmer transparently.
It is also important that the Ada programmer be able to write libraries or APIs for the Java
platform in Ada, and that these libraries be easily usable in any Java application. GNAT
guarantees full interoperability between Ada and Java.

To achieve this goal, constructs that can appear in a Java class at the specification
level are mapped to Ada either by means of a corresponding Ada feature or by using an
implementation-defined Ada pragma.

In addition we have taken great care that the mapping from Java to Ada is completely
automatic. This means that GNAT comes with no Ada bindings for the Java API, but
instead provides a tool (see Chapter 6 [Using the Java API with jvm2ada], page 15) which
is able to produce Ada specifications from any set of JVM ‘.class’ files.

2.1 Importing Java Services to Ada

To access the services provided by the Java API or by any set of JVM ‘.class’ files, you
should proceed as follows:

1. If your Java code is in source form, compile it using any Java compiler.

2. If you just want to import a variable or a subprogram from a Java class use pragma

Import (see Section 7.4 [Pragma Import Java], page 28) in the Ada code where you
want to import the Java service.

3. More generally, you can use the jvm2ada utility to produce the Ada specs (containing
the appropriate Java-specific pragmas) for the ‘.class’, ‘.zip’, or ‘.jar’ files contain-
ing the Java services you would like to use from Ada (see Chapter 6 [Using the Java
API with jvm2ada], page 15). Note that jvm2ada preserves, in the generated Ada
specs, the names of the original Java services (for a detailed explanation of the Java to
Ada mapping see Chapter 8 [Mapping Java into Ada], page 33).

4. with the needed Ada specs and use their services as usual.

It’s as simple as that.

2.2 Exporting Ada Services to Java

To export a set of Ada services to Java you should:

1. Use pragma Export and other Java interfacing pragmas inside the Ada code (see
Chapter 7 [Java-Specific Pragmas], page 19). This gives you complete control of what
is being generated and allows you to decide very precisely what the exported services
look like on the Java side.

2. Compile your Ada code with the GNAT compiler.

3. Use javap to display the spec of the ‘.class’ files generated by GNAT whose services
you would like to use in your Java code.

Chapter 3: Viewing Class Files with jvmlist 9

3 Viewing Class Files with jvmlist

The jvmlist tool takes JVM ‘.class’ files as input (directly or regrouped in an uncom-
pressed ‘.zip’ or ‘.jar’ file) and disassembles it to view its contents: bytecode, constant
pool (i.e., symbol table), debugging info, etc. This utility can also embed the original source
code in the assembly listing. jvmlist is independent of the original programming language
and works equally well on programs containing a mixture of Ada and Java code.

3.1 Running jvmlist

The form of the jvmlist command is

jvmlist [switches] file [file ... file]

where file can be one of the following:

− the name of a ‘.class’ file (possibly without the ‘.class’ suffix);

− the name of an uncompressed zip archive (in this case the jvmlist command applies
to all ‘.class’ files within the archive);

− the name of a ‘.class’ file within an uncompressed zip archive
(e.g. ‘rt.jar/java/lang/Object.class’).

File names can be prefixed with directory information.

The output of jvmlist contains a listing of all the fields and methods declared inside
the ‘.class’ file, in addition to various other class information such as the class it extends,
the interfaces it implements, etc.

If you select switch ‘-c’, then jvmlist will also print the bytecode for each method.
The bytecode mnemonics used by jvmlist are the same as those documented in Sun’s
JVM book The Java Virtual Machine Specification by Lindholm and Yellin. If you select
switch ‘-c’, jvmlist will also embed the original source code in the bytecode. For now,
jvmlist only looks for source files in the current directory.

3.2 Switches for jvmlist

The following switches are available with the jvmlist utility:

-c Display bytecode. By default jvmlist does not display the bytecode of each
method. This switch specifies that bytecode should be displayed.

-g Embed source code. This switch implies ‘-c’ and embeds the original source
code within the disassembled bytecode. If the input ‘.class’ file does not
contain source file information, or if the source file cannot be located in the
current directory (the one where jvmlist was invoked), then this switch is
equivalent to ‘-c’.

-l Display line number tables.

-p Display the constant pool.

-t Display local variable tables.

-v Verbose. Outputs the name of each class file for which an Ada spec is generated.

10 GNAT User’s Guide Supplement for the JVM Platform

-V Very verbose. Implies -v. Each item that is encountered in a zip or jar file is
listed on the screen. Class files are preceded with a ->, other items are listed
with a message saying that the item is skipped. Only class files whose name
is listed twice (one preceded with a -> and the following one without the ->)
have a corresponding Ada spec generated for them, other class files are ignored
(because for instance they are not public classes).

Chapter 4: Stripping Debug Info with jvmstrip 11

4 Stripping Debug Info with jvmstrip

The jvmstrip tool takes a ‘.class’ files as input (directly or packaged in an uncompressed
‘.zip’ or ‘.jar’ file) and strips off all of its debugging info to reduce its size. This utility
is independent of the original programming language and works equally well on programs
containing a mixture of Ada and Java code.

4.1 Running jvmstrip

The form of the jvmstrip command is
jvmstrip [switches] file [file ... file]

where file can be one of the following:

− the name of a ‘.class’ file

− the name of an uncompressed zip archive (in this case the jvmstrip command applies
to all ‘.class’ files within the archive);

File names can be prefixed with directory information.

The output of jvmstrip is a stripped ‘.class’ file which replaces the original input file.
If the input is an archive, then all of the ‘.class’ files within the archive are stripped and
the updated archive replaces the input file.

4.2 Switches for jvmstrip

The following switches are available with the jvmstrip utility:

-v Verbose.

Chapter 5: Building Archives with jarmake 13

5 Building Archives with jarmake

When building an Ada application with GNAT, a number of JVM ‘.class’ files are gen-
erated. In addition to potentially being numerous, the generated classes depend on the
library ‘jgnat.jar’ which is installed with GNAT.

If you need to ship your Ada application or gnapplet to people who do not have GNAT
installed this can be cumbersome as you would need to ship the ‘.class’ files of your
application along with ‘jgnat.jar’.

To automate such process we have provided jarmake, the GNAT archiver tool. jarmake
takes ‘.class’ files as input and recursively collects into an uncompressed zip archive all
the ‘.class’ files needed by the ‘.class’ files specified on the command line. This tool can
be used to prepare self-standing applications or gnapplets.

This utility is independent of the original programming language and works equally well
on programs containing a mixture of Ada and Java code.

5.1 Running jarmake

The form of the jarmake command is

jarmake [switches] file [file ... file]

where file can be one of the following:

− the name of a ‘.class’ file

− the name of an image, sound or any other file that you want to bundle with your
application.

File names can be prefixed with directory information.

The output of jarmake is an uncompressed zip archive containing the files specified on
the command line along with the ‘.class’ files they recursively reference.

5.2 Switches for jarmake

The following switches are available with the jarmake utility:

-Lzip-archive

When searching for ‘.class’ files, look in the uncompressed zip archive zip-
archive.

-j Do not skip ‘.class’ files in the Java API. By default jarmake skips all the
‘.class’ files in the Java API. By using this switch you are asking jarmake

to include Java API classes in the output zip archive. If you set this flag you
should also provide a -L flag giving the location of the Java API zip archive.

-k Keep going even if not all of the ‘.class’ files are found. By default, jarmake
will stop if it cannot find all the needed ‘.class’ files. By setting this switch
jarmake will emit a warning message when it cannot find a ‘.class’ file it is
looking for and will continue.

-m Add a Main-Class attribute to the manifest for the first class encountered that
has a main method.

14 GNAT User’s Guide Supplement for the JVM Platform

-n Do not include the ‘.class’ files of the library ‘jgnat.jar’ in the output
archive. By default these files are included in the output archive so that the
the archive is autonomous.

-o zip-archive

Name of the output uncompressed zip archive. If this switch is not specified,
then the default name is ‘gnapplet.jar’.

-q Quiet.

-v Verbose.

Chapter 6: Using the Java API with jvm2ada 15

6 Using the Java API with jvm2ada

The jvm2ada tool takes JVM ‘.class’ files as input (directly or regrouped in an uncom-
pressed ‘.zip’ or ‘.jar’ file) and generates Ada specs as output.

6.1 Running jvm2ada

The form of the jvm2ada command is

jvm2ada [switches] file [file ... file]

where file can be any of the following:

− the name of a ‘.class’ file (possibly without the ‘.class’ suffix);

− the name of an uncompressed zip archive (in this case the jvm2ada command applies
to all ‘.class’ files within the archive);

− the name of a ‘.class’ file within an uncompressed zip or jar archive
(e.g. ‘rt.jar/java/lang/Object.class’).

File names can be prefixed with directory information.

The output of jvm2ada is an Ada source file for each ‘.class’ file processed. The Ada
source file contains a package spec giving the Ada declaration for the services exported by
the corresponding ‘.class’ file. The name of the Ada package is obtained by concatenating
the name of the Java class to the name of the Java package containing the class. As an
example, a Java class someName occurring within Java package some.pack yields the Ada
package some.pack.someName and is in a file named ‘some-pack-somename.ads’.

Unless switch ‘-o’ is used (see Section 6.2 [Switches for jvm2ada], page 15), the Ada files
generated are placed in the directory where the jvm2ada command is invoked.

6.2 Switches for jvm2ada

The following switches are available with the jvm2ada utility:

-Izip-archive

When looking for a source file (to find the parameter names of a Java method),
search the uncompressed zip archive zip-archive. See Section 6.4 [Parameter
Names and Source Search Paths], page 17, for details. (This switch is not yet
supported.)

-Lzip-archive

When searching for ‘.class’ files, look in the uncompressed zip archive zip-
archive. See Section 6.5 [Class File Search Paths], page 17, for details.

-k Keep original JVM identifiers. By default, identifiers encountered in a JVM
.class file are mangled whenever needed to turn them into proper Ada identifiers.
When this switch is set, identifiers are left as is in the generated Ada package
spec. See Section 6.6 [Identifier Mangling], page 18, for details.

-o dir Output to dir. Put all generated Ada source files into directory dir rather than
the current directory.

-q Quiet.

16 GNAT User’s Guide Supplement for the JVM Platform

-s Map Sun-specific classes into Ada specs. By default, Sun’s classes are not
mapped into Ada even if they are public, because they are typically not part of
the API at hand (certainly they are not part of the Java API, even though the
corresponding jar file contains them). Sun’s classes are the classes in packages
sun, sunw, and com.sun.

-v Verbose.

-w Overwrite existing file names. Normally jvm2ada regards it as a fatal error if
there is already a file with the same name as a file it would otherwise output.
This switch bypasses this check, and any such existing files will be silently
overwritten.

6.3 Running jvm2ada on the Java API

In this section, we’ll assume that the environment variable JAVA_SDK points to the root
installation of your java SDK (e.g. /jdk-1.5.0/).

To be able to access the Java API you need to process it to generate an Ada package spec
for each public class in the API. In order to manually do that, you will need first to create
a uncompressed version of the jce.jar file:

$ jar -xf "$JAVA_SDK/jre/lib/jce.jar"

$ jar -0cf uncompressed_jce.jar javax META-IN

then, run jvm2ada on the Java library archives (rt.jar, uncompressed jce.jar, charsets.jar
and jsse.jar).

$ jvm2ada -jgnat "$JAVA_SDK/jre/lib/rt.jar" \

"-Luncompressed_jce.jar" \

"-L$JAVA_SDK/jre/lib/charsets.jar" \

"-L$JAVA_SDK/jre/lib/jsse.jar"

This will create, in the current directory, an Ada package spec for each public Java class.
If you would like to output the Ada specs in some other directory use jvm2ada switch -o.

It’s possible peform this operation automatically, in a single command, using the script
bind_jre.sh (or bind_jre.cmd on windows):

$ bind_jre.sh $JAVA_SDK

Please note that because of some jvm2ada limitations, you may have compilation errors
with some of the generated packages. The most common one is a name clash, for example:

java-util-concurrent-locks-reentrantreadwritelock.ads:54:13: "WriteLock"

conflicts with declaration at

java-util-concurrent-locks-reentrantreadwritelock-writelock.ads:9

In order to fix this kind of conflict, you will need to edit the Ada generated code and
fix manually the name clash, for example by adding a suffix "_C" to the declaration of
WriteLock at line 54.

In case of a more complex problem, the generic workaround is to manually wrap the class
into a simpler interface, and then use the resulting binding of this interface. This occurs
on very rare cases, the large majority of the generated binding from the API being usable
without any change.

Chapter 6: Using the Java API with jvm2ada 17

6.4 Parameter Names and Source Search Paths

Note: Only point 2. below is implemented.

When generating the Ada spec for a ‘.class’ file, jvm2ada tries to preserve the original
names of method parameters. If the ‘.class’ file was compiled enabling the generation of
debugging tables (switch ‘-g’ in Sun’s JDK javac compiler), parameter names are stored
in the .class file. If not jvm2ada proceeds as follows:

1. If the name of the original source file is present in the ‘.class’ file, jvm2ada tries to
locate this source by looking at the uncompressed zip archives specified by the -Izip-
archive switches, in the order in which these switches occur. Once found, jvm2ada
uses the source file to locate parameter names. If the original source is not around you
can always communicate parameter names by creating a Java source file containing
the appropriate method specs. For instance to give the names of the parameters of
method someMethod in class someClass in package some_package you could create the
following source file:

package some_package;

// You must provide the appropriate Java package for someClass

public class someClass {

public int someMethod (int someName, float anotherName) {}

// The methods for which you want to name the parameters must have the

// same signature as the methods found in the .class file. The body

// can be empty.

}

2. If the appropriate source file cannot be located jvm2ada assigns arbitrary parameter
names of the form P1_type, P2_type, etc. where type denotes the flattened type name
for the corresponding parameter. The reason for appending type to the parameter name
is to allow the Ada programmer to resolve possible overloading resolution conflicts of
the following kind

public class Base { }

public class Deriv extends Base {

public static void p (Base obj) { ... }

public static void p (Deriv obj) { ... }

}

The overloaded procedure p above are translated by jvm2ada to the following Ada
specs:

procedure p (P1_Base : access Base.Typ’Class);

procedure p (P1_Deriv : access Deriv.Typ’Class);

The problem that arises is shown by the following example:
type Deriv_Ref is access all Deriv.Typ’Class;

Obj : Deriv_Ref := ...;

procedure p (Obj); -- Ambiguos call

procedure p (P1_Base => Obj); -- OK

procedure p (P1_Deriv => Obj); -- OK

6.5 Class File Search Paths

When processing a ‘.class’ file, jvm2ada may need to locate other ‘.class’ files. For
instance, to know whether the JVM class being processed is a Java exception, jvm2ada
must traverse the inheritance tree and must therefore locate the ‘.class’ files of the ancestor
classes.

18 GNAT User’s Guide Supplement for the JVM Platform

If jvm2ada does not find the ‘.class’ file it is looking for, then a warning message is
emitted. The order in which jvm2ada searches ‘.class’ files is given below.

1. If the ‘.class’ file being processed belongs to an uncompressed zip archive, jvm2ada
will look there first.

2. The uncompressed zip archives specified by a -Lzip-archive switch are searched next,
in the order in which the ‘-L’ switches occur.

6.6 Identifier Mangling

jvm2ada retains, whenever possible, the identifiers it finds in the ‘.class’ files it processes.
This is not always possible, however, because Java’s set of legal identifiers is bigger than
Ada’s. To address these issues jvm2ada proceeds as follows: If switch -k is set, the original
identifiers found in the JVM .class are left unchanged. You will have to change these yourself
in the generated packages if these are illegal Ada identifiers. If switch -k is not set then:

• Every identifier which is an Ada reserved word or any of the words “Standard”, “Ref”,
“Typ”, “Arr”, “Arr_2”, “Arr_3”, is suffixed with _K. For instance, Abort is mapped
to Abort_K.

• A single underscore is replaced by “U”.

• A leading underscore is replaced by “U_”.

• A trailing underscore is replaced by “_U”.

• A letter “U” is placed between every two consecutive underscores.

• If two or more identifiers generated in an Ada spec lead to an Ada name conflict, then
jvm2ada will add a trailing _K at the end of the second occurrence, a trailing _K2 at
the end of the third occurrence, a trailing _K3 at the end of the fourth occurrence,
etc. The cases currently caught are: identical variable names, identical variable and
subprogram names, identical variable and child package name. More complex cases
are not yet handled. In particular, we do not yet detect the case where we have two
identical field names in a record B and a record D derived from B. In these cases you
will have to revise the generated Ada spec to allow it to compile.

Chapter 7: Java-Specific Pragmas 19

7 Java-Specific Pragmas

The typical way to import services from Java classes is to use the jvm2ada tool to auto-
matically generate the specification of the corresponding ‘.class’ file. This specification
contains the appropriate Java-specific pragmas.

In some cases you may wish to import just one routine to your Ada code or you may
prefer to group certain services from multiple ‘.class’ files into a single Ada spec (for
instance if you are trying to provide a simplified view of the Java API).

In such cases it is useful to understand how the various Java-specific pragmas work.
Another situation where you may have to use these pragmas explicitly is when exporting
Ada services to Java.

This chapter introduces the features and pragmas that are needed for full support of
interfacing between Java and Ada.

7.1 Creating Java Interfaces: Pragma Java_Interface

Java offers a special kind of class called an interface. Interfaces provide a limited but useful
form of multiple inheritance. A Java interface is basically an abstract class with no fields
and whose methods are all abstract. Instead of inheriting from an interface, a Java class C
is said to implement the interface, which means that C must provide an implementation for
all of the abstract methods declared in the interface.

The key point to note about interfaces is that a class C can implement several interfaces
at the same time, and this mechanism is orthogonal to the fact that C may be extending
some other class.

To make a Java interface available to an Ada program we have provided the pragma
Java_Interface. Its syntax is:

pragma Java_Interface (type-name);

where type-name is the name of a type T declared earlier, immediately within the same
declarative part where the pragma occurs, and where the type has the following character-
istics that reflect the restrictions on Java interfaces:

1. T must be an abstract tagged type with a null record extension.

2. T must be derived from java.lang.Object.Typ (see Section 8.3 [Java References and
java.lang.Object], page 33).

3. T must have an access discriminant named Self with java.lang.Object.Typ’Class

as its designated type.

4. All of T’s primitive operations must be abstract.

5. T must have Java Convention.

Here is an example of using pragma Java_Interface:
with java.lang.Object;

package Foo is

type Typ (Self : access java.lang.Object.Typ’Class)

is abstract new java.lang.Object.Typ with null record;

pragma Java_Interface (Typ);

type Ref is access all Typ’Class;

20 GNAT User’s Guide Supplement for the JVM Platform

procedure Proc (This : access Typ; Val : Integer) is abstract;

function Func (This : access Typ) return Integer is abstract;

private

pragma Convention (Java, Typ);

end Foo;

Chapter 7: Java-Specific Pragmas 21

7.2 Using Java Interfaces

In order to declare an Ada type that implements one or more Java interfaces it is necessary
to use a simple programming idiom that is specially recognized by the compiler. This
mechanism is not restricted for use only with types imported from Java, but can be applied
to any Ada tagged type T.

The idiom consists in specifying a discriminant D for each Java interface Interf that
type T implements. The type of D must be some access type whose designated type is
Interf. Discriminants such as D are not represented by an actual field in the object, but
rather serve as a symbolic shorthand to indicate the special characteristics of type T to the
compiler.

As an example, the following package spec declares a type Bar.Typ which implements
interface Foo.Typ:

with Foo;

package Bar is

type Typ (Foo_I : Foo.Ref) is tagged record

Field : Integer;

end record;

-- Discriminant Foo_I above signals that Bar.Typ implements the

-- Foo.Typ interface (Foo_I stands for Foo Interface). The

-- compiler does not create a field for Foo_I but marks the

-- generated .class file as implementing interface Foo.Typ.

procedure Proc (This : access Typ; Val : Integer);

function Func (This : access Typ) return Integer;

-- Unless Bar.Typ is itself marked abstract, Bar.Typ must

-- provide an implementation for subprograms Proc and Func.

-- Right now if you omit these subprograms the GNAT compiler will not

-- complain, but when loading the .class file corresponding to Bar.Typ

-- the JVM will halt execution with a verifier error.

end Bar;

As mentioned in the example, unless T is abstract, T must provide an implementation for
each of the abstract operations of the Interf interface (currently this check is not done by
the GNAT compiler but is caught later on by the JVM).

A second use of these special interface discriminants is to enable conversions between
pointers to type T and pointers of its implemented interface types as the example below
demostrates.

with Foo;

with Bar;

package Client is

X : Bar.Ref := new Bar.Typ (null);

-- Create an object of type Bar.Typ. To satisfy Ada’s semantic rules

-- we must provide a value for Foo_I, but this value is ignored.

Y : Foo.Ref := X.Foo_I;

-- OK, upward conversion allowed, no checks.

-- Referencing discriminant Foo_I is a convenient way to convert X

-- to a Foo.Ref. The compiler transorms all references to Foo_I

-- into references to the selector itself, in this case X.

Val : Integer := Foo.Func (Y);

-- Dispatching call

end Client;

22 GNAT User’s Guide Supplement for the JVM Platform

A conversion can also be made from an object of the class-wide interface reference
type to an implementing reference type, by selecting the Self field (which is of type
java.lang.Object.Typ’Class), and then applying a downward tagged type conversion
(assuming that T derives directly or indirectly from java.lang.Object). Such a down-
ward conversion will involve a run-time check, to ensure that the source object belongs to
the target type’s class. The package spec below illustrates one such downward conversion.

with Foo;

with java.lang.Object;

package Zar is

type Typ (Foo_I : Foo.Ref) is new java.lang.Object.Typ with record

Field : Integer;

end record;

type Ref is access all Typ’Class;

procedure Proc (This : access Typ; Val : Integer);

function Func (This : access Typ) return Integer;

X : Zar.Ref := new Zar.Typ (null);

Y : Foo.Ref := X.Foo_I;

Z : Zar.Ref := Zar.Ref (Y.Self);

-- OK, downward conversion, run-time check that Y designates an

-- object in Zar.Obj’Class.

-- Again the compiler ignores the special discriminant Self and

-- returns the selector itself, in this case Y.

end Zar;

In both of the cases shown above, the compiler recognizes the special idiom of selecting the
interface or Self discriminant as meaning a reference to the object itself, reinterpreting the
type of the object appropriately.

The above mechanism can also be used within another Java_Interface type as illus-
trated by the following example:

with java.lang.Object;

package Zoo is

type Typ (Self : access java.lang.Object.Typ’Class) is

new abstract java.lang.Object.Typ with null record;

pragma Java_Interface (Typ);

type Ref is access all Typ’Class;

procedure Interface_Op (This : access Typ) is abstract;

private

pragma Convention (Java, Typ);

end Zoo;

with java.lang.Object; use java.lang.Object;

with Foo;

with Zoo;

package Woo is

type Typ (Foo_I : Foo.Ref;

Zoo_I : Zoo.Ref)

is new abstract java.lang.Object.Typ with null record;

pragma Java_Interface (Typ);

type Ref is access all Typ’Class;

Chapter 7: Java-Specific Pragmas 23

-- Woo must list all of the abstract operations of interfaces

-- Foo and Zoo.

procedure Proc (This : access Typ; Val : Integer) is abstract;

function Func (This : access Typ) return Integer is abstract;

procedure Interface_Op (This : access Typ) is abstract;

procedure New_Op (This : access Typ) is abstract;

-- A new operation of the interface

private

pragma Convention (Java, Typ);

end Woo;

Another interesting example is the declaration of a type Bar.Child.Typ that derives from
Bar.Typ and implements interface Woo.Typ, as shown below:

with Foo;

with Woo;

package Bar.Child is

type Typ (Foo_I : Foo.Ref;

Woo_I : Woo.ref)

is new Bar.Typ (Foo_I) with null record;

-- Note how Foo_I is used to constrain Bar.Typ. This is just to

-- satisfy Ada semantics requirements and has no other implications.

type Ref is access all Typ’Class;

procedure Proc (This : access Typ; Val : Integer);

function Func (This : access Typ) return Integer;

procedure Interface_Op (This : access Typ);

procedure New_Op (This : access Typ);

end Woo;

An interesting point to note is when an Ada tagged type Deriv derives from an Ada tagged
type Base which implements a number of interfaces. If Deriv does not implement any
additional interface there is no need to specify interface discriminants for Deriv, since it
can simply inherit those of Base.

24 GNAT User’s Guide Supplement for the JVM Platform

7.3 The Java_Constructor Pragma

7.3.1 Background on Java Constructors

A Java constructor is a special method that must be invoked immediately after allocating
an object, in order to initialize the object. Given the following Java class:

public class C {

public int field;

public C () { field = 3; }

public C (int i) { field = i; }

}

then the statement C obj = new C (3) accomplishes two things:

1. It allocates a new instance of class C in the Java heap and sets obj to point to this
object;

2. It then calls the constructor that takes an int parameter, passing obj to it as a hidden
parameter and the value 3 for its int parameter.

If no constructor is provided, as in the following class:

class D extends C {

float f;

}

then a default constructor

public D () {

super ();

}

is automatically generated for class D. The call of super() inside this default constructor
(known as a no-arg constructor) invokes the no-arg constructor of the superclass of D, that
is, the constructor of class C.

Generally speaking, the first statement of every constructor must either be a call to
another constructor of the class, or a call to a constructor of the superclass. For instance,
given a constructor

public C (int i, int j) { this (i + j); }

The call this (...) invokes another constructor in the same class whose profile matches
the parameters specified in (...). As another example, consider:

public D (int k) { super (k); }

where again super (...) invokes a constructor in the superclass whose profile matches the
parameters specified in (...).

The observant reader will note that in both of the original constructors of class C, there
are no calls to either this (...) or super (...). When no such call is explicitly given,
the Java compiler automatically inserts calls to the no-arg constructor in the superclass.
If the superclass does not have a no-arg constructor (more on this below), then you must
explicitly insert calls to super (...) or this (...).

As noted above, a class might not have a no-arg constructor. This can occur only when
explicit constructors are defined in the class. In this case, the no-arg constructor is not
automatically generated for the class, and if a no-arg constructor is desired, you must add
it yourself. For instance, in the following class:

Chapter 7: Java-Specific Pragmas 25

public class A {

int ival;

public A (int i) { ival = i; }

}

public class B extends A {

float fval;

public B (float f) { fval = f; }

}

the Java compiler will issue a compile-time error reporting that no constructor matching A

() was found in class A, because the compiler tries to insert such a call at the beginning of
B. To correct this problem the Java programmer must either add a no-arg constructor A ()

in class A, or else change the definition of B’s constructor to contain an explicit constructor,
e.g., as follows:

public B (float f) {

super (0);

fval = f;

}

7.3.2 Using Java Constructors in Ada

To assert that an Ada function function-name should be mapped to a Java constructor of
some Ada tagged-type, we have introduced the Java_Constructor pragma. Its syntax is
as follows:

pragma Java_Constructor (function-name);

where function-name is the name of a function declared immediately within the same declar-
ative part where the pragma occurs, and the function must have the following characteristics:

1. The function’s result type is an access type designating a class-wide type with con-
vention Java declared at the same declarative level as the function (access tagged-

type’Class);

2. The first function parameter is named This, and its type is a named access type
designating tagged-type’Class which may have a null default value;

3. If the constructor invokes other constructor then the first declaration in the function
body should contain an object declaration with a default initial expression of the form
constructor-func (..., This), where the constructor-func is a Java_Constructor

function which belongs either to tagged-type or to the parent type of tagged-type;

The effect of a Java_Constructor pragma is to compile function-name into a constructor
for the class corresponding to tagged-type. In addition, whenever function-name is invoked
with a null value for parameter This, the compiler calls the tagged-type object allocator
and passes in the pointer to the newly allocated object in lieu of the value null.

A Java_Constructor pragma is a program unit pragma. It can appear in the same places
where an Inline pragma for function-name can appear. The Java_Constructor pragma
applies to all the overloaded function-name subprograms declared immediately within the
declarative region containing the pragma.

As an example, the following Java code:

public class C {

public int field;

public C () { field = 3; }

26 GNAT User’s Guide Supplement for the JVM Platform

public C (int i) { field = i; }

public C (int i, int j) { this (i + j); }

}

is equivalent to the following Ada:

Chapter 7: Java-Specific Pragmas 27

with java.lang.Object; -- more on this package in the coming sections

use java.lang.Object;

package C is

use java.lang;

type Typ is new java.lang.Object.Typ with record

Field : Integer;

end record;

type Ref is access all Typ’Class;

function new_C (This : Ref := null) return Ref;

function new_C (I : Integer; This : Ref := null) return Ref;

function new_C (I, J : Integer; This : Ref := null) return Ref;

private

pragma Java_Constructor (new_C);

end C;

package body C is

function new_C (This : Ref := null) return Ref is

Super : Object.Ref := Object.new_Object (Object.Ref (This));

begin

This.Field := 3;

return This;

end new_C;

function new_C (I : Integer; This : Ref := null) return Ref is

Super : Object.Ref := Object.new_Object (Object.Ref (This));

begin

This.Field := I;

return This;

end new_C;

function new_C (I, J : Integer; This : Ref := null) return Ref is

Ignore : Ref := new_C (I + J, This);

begin

return This;

end new_C;

end C;

7.3.3 Java Constructors and Ada Allocators

An interesting question raised by the Java_Constructor pragma is the interaction between
Ada allocators and constructors. For instance a client of package C given in the previous
section could write:

with C;

procedure Client is

Obj_1 : C.Ref := new_C;

Obj_2 : C.Ref := new C.Typ; -- what happens here ???

What GNAT does in the allocator case is to call the no-arg constructor if present (in the
example new_C (This : Ref := null)). If there is no no-arg constructor then an error is
emitted by the GNAT compiler (this last check is currently not yet supported, and there
will be an exception at run time).

28 GNAT User’s Guide Supplement for the JVM Platform

7.4 Pragma Import Java

For convention Java, pragma Import has the following syntax:
pragma Import ([Convention =>] Java,

[Entity =>] Local_Name

[,[External_Name =>] String_Expression]);

where Local Name is the name of an object, subprogram, record component, exception, or
package, while String Expression is a string giving the Java name of the imported entity.
If String Expression is missing it is taken to be the Local Name, all in lower-case letters.

7.4.1 Importing Packages

If the Local Name of an Import pragma is the name of a package spec P, then all the
entities declared in P must be explicitly imported from Java. The String Expression of
such an Import pragma gives the name of the Java class corresponding to P and can be a
simple class name or it can have the form java package name.class name, which indicates
that the class class name corresponding to P belongs to Java package java package name.
If java package name is missing, the class belongs to the anonymous Java package.

The precise rules when importing a package P are:

• All the entities declared inside P must be imported either by means of the Import

pragma or by using other Java-specific pragmas.

• P should contain at most one tagged or untagged record type whose name must be
Typ. Typ models the record part of the class corresponding to P.

• P can contain at most one exception, whose Import pragma must have exactly the same
String Expression as for P. (In jvm2ada such an exception is present only if the class
corresponing to P derives, directly or indirectly, from class java.lang.Throwable. The
name we have selected for such an exception is Except.)

• P should not contain task types or protected types.

• The String Expression of the Import pragma for an object, subprogram, or record
component declared in P must be a simple name (it cannot contain any “.” characters).

• If P contains nested packages, these must themselves contain an Import pragma (and
the above rules apply recursively).

As a first example consider the following package:
with java.lang.Object; -- more on this package in the coming sections

package root.outer.Child is

type Typ is new java.lang.Object.Typ with record

x : Integer;

pragma Import (Java, x, "x");

Y : Integer;

pragma Import (Java, Y, "Y");

end record;

type Ref is access all Typ’Class;

procedure Dispatching_Op (This : access Typ; I : Integer);

function Non_Dispatching_Op (F : Float) return Integer;

function New_Child (This : Ref := null) return Ref;

Global : Integer;

Chapter 7: Java-Specific Pragmas 29

private

pragma Import (Java, Dispatching_Op, "someProcedure");

pragma Import (Java, Non_Dispatching_Op, "someFunction");

pragma Java_Constructor (New_Child);

pragma Import (Java, Global);

end root.outer.Child;

pragma Import (Java, Outer.Child, "root.outer.CHILD");

This package imports into Ada the services of a class whose spec in Java looks like:

package root.outer;

public class CHILD extends java.lang.Object {

public int x;

public int Y;

public void someProcedure (int i);

public static int someFunction (float f);

public CHILD ();

public static int global;

}

Note that in the Ada spec, the Java methods someProcedure and someFunction have been
named Dispatching_Op and Non_Dispatching_Op.

7.4.2 Importing Exceptions

If the Local Name of an Import pragma is the name of an exception E, the
String Expression of such an Import pragma gives the name of the JVM class
corresponding to E and can be a simple class name or it can have the form
java package name.class name which says that the JVM class class name corresponding
to E belongs to Java package java package name. If java package name is missing, the
JVM class belongs to the anonymous Java package.

When importing an exception you should make sure that the imported JVM class is
indeed a Java exception, i.e. it derives from java.lang.Throwable.

As an example here is an excerpt of the spec of class java.lang.Throwable generated
by jvm2ada:

package java.lang.Throwable is

type Typ ...;

type Ref is access all Typ’Class;

Except : Exception;

...

private

pragma Import (Java, Except, "java.lang.Throwable);

...

end java.lang.Throwable;

pragma Import (Java, java.lang.Throwable, "java.lang.Throwable");

7.4.3 Importing Record Components

If the Local Name of an Import pragma is the name of a record field, then the record field
must be declared in a record whose convention is Java and the record must be declared in

30 GNAT User’s Guide Supplement for the JVM Platform

a package specification which is itself imported. In this case String Expression must be a
simple name (i.e. contains no dots) giving the name of the imported field.

7.4.4 Importing Dispatching Subprograms

If the Local Name of an Import pragma is the name of a dispatching subprogram (i.e., a
primitive operation of a tagged type), then the subprogram must be declared in a package
specification which is itself imported. In this case String Expression must be a simple name
(i.e. contains no dots) giving the name of the imported subprogram.

7.4.5 Importing Objects

If the Local Name of an Import pragma is the name of an object and the object is declared
in a package specification which is itself imported the String Expression must be a simple
name (i.e. contains no dots) giving the name of the imported Java static field.

An Import pragma for an object can be given even though such an entity does not
occur in a package spec with an Import pragma. In this case the String Expression of the
Import pragma must give the complete Java name of the imported as shown in the following
example:

procedure Foo is

Var : Integer;

pragma Import (Java, Var, "pack.Foo.the_var");

begin

Var := 3;

end Foo;

7.4.6 Importing Non-Dispatching Subprograms

If the Local Name of an Import pragma is the name of a non-dispatching subprogram
and the subprogram is declared in a package specification which is itself imported the
String Expression must be a simple name (i.e. contains no dots) giving the name of the
imported Java static method.

An Import pragma for a non-dispatching subprogram can be given even though such
an entity does not occur in a package spec with an Import pragma. In this case the
String Expression of the Import pragma must give the complete Java name of the imported
as shown in the following example:

procedure Foo is

X : Integer;

function Compute (I : Integer) return Integer;

pragma Import (Java, Compute, "pack.Bar.calc");

begin

X := Compute (3);

end Foo;

7.5 Pragma Export Java

In the absence of pragma Export, the name of any Ada object, field, or subprogram compiled
into a class file is the name of the corresponding Ada entity in lower-case letters.

For exceptions, record types and packages, the names of the generated class files are all
in lower case.

Chapter 7: Java-Specific Pragmas 31

By using pragma Export the user can change the default name that is generated by the
GNAT compiler. In addition, for Ada packages it can also specify which Java package they
belong to. For convention Java, the pragma Export has the following syntax:

pragma Export ([Convention =>] Java,

[Entity =>] Local_Name

[,[External_Name =>] String_Expression]);

where Local Name is the name of an object, subprogram, record component, record type,
exception, or package, and String Expression is a string giving the Java name of the ex-
ported entity. If String Expression is missing it is taken to be the Local Name, all in
lower-case letters.

7.5.1 Exporting Objects, Subprograms, and Record Components

NOTE: Exporting of record components is not yet supported.

If the Local Name of an Export pragma is the name of an object, record component, or
subprogram (but not a top-level subprogram), String Expression must be a simple name
(i.e., it contains no . characters), giving the name of the corresponding entity at the JVM
level. As an example, when compiling the following package specification:

package C is

type Typ is tagged record

Field : Integer;

pragma Export(Java, Field, "THE_FIELD");

end record;

function Instance_Op (This : access Typ; I : Integer) return Integer;

Var : Integer;

function Op (J : Integer) return Integer;

private

pragma Export (Java, Instance_Op, "dispatch_op");

pragma Export (Java, Var, "the_var");

end C;

this is interpreted as the following two class specification at the JVM level:

public class c {

public static int the_var;

public static int op (int j);

}

public class c$typ {

public int THE_FIELD;

public int dispatch_op (int i) {...}

}

Note that when exporting an object, subprogram, or record component you cannot specify
its JVM class, as this is determined by the compiler.

7.5.2 Exporting Exceptions

If the Local Name of an Export pragma is the name of an exception E, then the
String Expression of such an Export pragma gives the name of the generated JVM class
for the Ada exception, overriding the name that would have been given by the compiler.
String Expression can be a simple class name, or it can have the form

32 GNAT User’s Guide Supplement for the JVM Platform

java_package_name.class_name

indicating that the generated class belongs to Java package java package name. If the name
java package name is missing, the class is defined to belong to the anonymous Java package.

Care must be taken not to use the same class name for two Ada exceptions, packages or
record types when they belong to different source files located in the same directory, since
one ‘.class’ file would overwrite the other.

7.5.3 Exporting Packages or Record Types

NOTE: Exporting of packages is not yet supported.

If the Local Name of an Export pragma is the name of a package spec or record type P, then
the String Expression of such an Export pragma gives the name of the generated JVM class,
overriding the name that would have been given by the compiler. String Expression can be
a simple class name, or it can have the form java package name.class name indicating that
the generated JVM class belongs to Java package java package name. If java package name
is missing, the JVM class belongs to the anonymous Java package.

Care must be taken not to use the same class name for two Ada exceptions, packages or
record types when they belong to different source files located in the same directory, since
one ‘.class’ file would overwrite the other.

If the same Export pragma is specified for a package spec and a record type con-
tained inside it, then the GNAT compiler will map both of these in the same JVM class.
For instance without Export pragmas the following code generates 2 JVM ‘.class’ files:
‘outer$child.class’ and ‘outer$child$rec.class’.

package Outer.Child is

type Rec is tagged record

F : Float;

end record;

procedure Proc (This : Rec);

-- This always goes in the same .class file as type Rec

function Global (I : Integer) return Rec;

-- This always goes in the same .class file as the package

end Outer.Child;

If the same Export pragma is used a single class file is generated (‘CHILD.class’ in JVM
package root.outer).

package Outer.Child is

type Rec is record

X : Float;

end record;

pragma Export (Java, Rec, "root.outer.CHILD");

procedure Proc (This : Rec);

function Global (I : Integer) return Rec;

-- Both subprograms are generated in the same .class file

end Outer.Child;

pragma Export (Java, Outer.Child, "root.outer.CHILD");

Chapter 8: Mapping Java into Ada 33

8 Mapping Java into Ada

This chapter details the mapping used by jvm2ada to map Java ‘.class’ files into Ada
package specs. It is assumed that the reader is familiar with the Java language.

8.1 Identifiers

See Section 6.6 [Identifier Mangling], page 18.

8.2 Scalar Types

Java scalar tpes are mapped into Ada scalar types as follows:
boolean (1 byte) maps into Standard.Boolean

char (2 bytes) " " Standard.Wide_Character

byte (1 byte) " " Standard.Short_Short_Integer

short (2 bytes) " " Standard.Short_Integer

int (4 bytes) " " Standard.Integer

long (8 bytes) " " Standard.Long_Integer

float (4 bytes) " " Standard.Float

double (8 bytes) " " Standard.Long_Float

As a convenience for the Ada programmer subtypes are used to express the correspondence
between primitive numeric Java types and the Ada scalar types defined in package Standard.

We have chosen to place these subtypes at the root of the Ada version of the Java API,
i.e., in package Java. Thus these subtypes are directly available in the Ada version of
the API and at hand for users of the API. The code excerpt below gives the beginning of
package java:

package java is

pragma Preelaborate;

subtype boolean is Standard.Boolean;

subtype char is Standard.Wide_Character;

subtype byte is Standard.Short_Short_Integer;

subtype short is Standard.Short_Integer;

subtype int is Standard.Integer;

subtype long is Standard.Long_Integer;

subtype float is Standard.Float;

subtype double is Standard.Long_Float;

...

end java;

8.3 Java References and java.lang.Object

When it comes to composite objects such as arrays and records, Java differs from Ada in
the fact that it only has reference semantics. More precisely, in Java you can only allocate
an object in the garbage-collected heap and obtain a reference to such object. All object
reads and writes are done via this reference. In addition, you cannot copy an object as a
whole into another object: there is no default deep-copy operation in Java.

In mapping Java services to Ada, we have preserved its reference semantics, as shown
in the code excerpt below which shows the salient part of how class java.lang.Object is
mapped into Ada:

34 GNAT User’s Guide Supplement for the JVM Platform

package java.lang.Object is

pragma Preelaborate;

type Typ is tagged limited private;

type Ref is access all Typ’Class;

function new_Object (This : Ref := null) return Ref;

-- The constructor

...

private

type Typ is tagged limited null record;

...

end java.lang.Object;

As a first remark, tagged types imported from Java should be limited since, as mentioned
before, no object assignment operation exists on the JVM. Second, unlike Java, in Ada we
need to define two types: one for the actual tagged type (type Typ) and one for the actual
refernces (type Ref). This means that while in Java you can write something like:

import java.lang.Object;

class client {

void foo () {

Object obj = new Object ();

}

}

in Ada you have to write:
with java.lang.Object; use java.lang.Object;

procedure Foo is

obj : Object.Ref = new_Object;

begin

null;

end Foo;

Furthermore, for now we impose some restrictions on types that extend types that are
declared in packages imported from Java.

Since the parent type of such a type extension has convention Java, the extended type
inherits convention Java (even though declared within a normal Ada package). This means
that the extended type should not contain any component declarations that would not be
appropriate in an equivalent Java class.

In particular, a type that extends from a Java-convention parent type should not have
any components of the following kinds:

• components with default initialization (excepting access components that are initialized
by null)

• components of composite types (arrays, records, tasks, protected types)

• components of private types whose full type is a composite type

The reason for these restrictions is that each of the above formsu of components requires
some kind of run-time initialization at the time an object of the containing type is created.
Such initialization needs to happen before any user code can reference the components.
However, in the presence of user-defined constructors, which are executed immediately
after object creation (as required by the JVM), this is difficult for the compiler to support.

The workaround for cases where composite components are desired is instead to declare
components of access types that designate the types you want to use. The allocation and

Chapter 8: Mapping Java into Ada 35

initialization of those access components can then be performed as part of the actions of
your own user-defined constructor function (see Section 7.3 [The Java Constructor Pragma],
page 24).

If we were to allow such components, the consequences of failing to heed the above
restrictions would include the creation of objects that are not fully allocated or initialized,
with the potential for crashing the program.

The GNAT compiler will reject the attempt to declare a Java-convention record type
with any of the restricted forms of components by flagging each offending component. We
plan to try relaxing these restrictions in a future release.

8.4 Array Types

Let’s illustrate the mapping with an example. Assume you would like to map a Java array
of int into Ada. For instance, in Java you might write:

int[] obj;

// obj is a reference to an array of int

obj = new int [3];

// Allocate an array-of-int object with 3 elements.

// The index of the first element is zero.

The above is mapped into the following Ada declarations:
type int_Arr_Obj is array (Natural range <>) of int;

type int_Arr is access all int_Arr_Obj;

obj : int_Arr;

-- int[] obj;

obj := new int_Array_Obj (0 .. 2);

-- obj = new int [3];

Java does not have multidimensional arrays, it only has arrays of arrays. As a result
int[][] obj2 = new int [3][2];

is mapped into
type int_Arr_2_Obj is array (Natural range <>) of int_Arr;

type int_Arr_2 is access all int_Arr_2_Obj;

Obj2 : int_Arr_2 := new int_Arr_2_Obj (0 .. 2, 0 .. 1);

-- obj2 = new int [3][2];

The final question that remains to answer is where are the various array type definitions
located. Scalar array types have been placed in package Java, while array types associated
with a given JVM class are placed in the Ada package spec for that class. Indeed when
processing a JVM class C, jvm2ada generates the following at the beginning of the Ada
package spec coresponding to C :

package C is

pragma Preelaborate;

type Typ is ...;

type Ref is access all Typ’Class;

type Arr_Obj is array (Natural range <>) of Ref;

type Arr is access all Arr_Obj;

36 GNAT User’s Guide Supplement for the JVM Platform

type Arr_2_Obj is array (Natural range <>) of Arr;

type Arr_2 is access all Arr_2_Obj;

...

end C;

Chapter 8: Mapping Java into Ada 37

8.5 The Ada Package Java
package java is

pragma Preelaborate;

subtype boolean is Standard.Boolean;

subtype char is Standard.Wide_Character;

subtype byte is Standard.Short_Short_Integer;

subtype short is Standard.Short_Integer;

subtype int is Standard.Integer;

subtype long is Standard.Long_Integer;

subtype float is Standard.Float;

subtype double is Standard.Long_Float;

-- boolean array types: boolean [], boolean [][], boolean [][][]

type boolean_Arr_Obj is array (Natural range <>) of boolean;

type boolean_Arr is access all boolean_Arr_Obj;

type boolean_Arr_2_Obj is array (Natural range <>) of boolean_Arr;

type boolean_Arr_2 is access all boolean_Arr_2_Obj;

type boolean_Arr_3_Obj is array (Natural range <>) of boolean_Arr_2;

type boolean_Arr_3 is access all boolean_Arr_3_Obj;

-- char array types: char [], char [][], char [][][]

type char_Arr_Obj is array (Natural range <>) of char;

type char_Arr is access all char_Arr_Obj;

type char_Arr_2_Obj is array (Natural range <>) of char_Arr;

type char_Arr_2 is access all char_Arr_2_Obj;

type char_Arr_3_Obj is array (Natural range <>) of char_Arr_2;

type char_Arr_3 is access all char_Arr_3_Obj;

-- byte array types: byte [], byte [][], byte [][][]

type byte_Arr_Obj is array (Natural range <>) of byte;

type byte_Arr is access all byte_Arr_Obj;

type byte_Arr_2_Obj is array (Natural range <>) of byte_Arr;

type byte_Arr_2 is access all byte_Arr_2_Obj;

type byte_Arr_3_Obj is array (Natural range <>) of byte_Arr_2;

type byte_Arr_3 is access all byte_Arr_3_Obj;

-- short array types: short [], short [][], short [][][]

type short_Arr_Obj is array (Natural range <>) of short;

type short_Arr is access all short_Arr_Obj;

type short_Arr_2_Obj is array (Natural range <>) of short_Arr;

type short_Arr_2 is access all short_Arr_2_Obj;

type short_Arr_3_Obj is array (Natural range <>) of short_Arr_2;

type short_Arr_3 is access all short_Arr_3_Obj;

-- int array types: int [], int [][], int [][][]

38 GNAT User’s Guide Supplement for the JVM Platform

type int_Arr_Obj is array (Natural range <>) of int;

type int_Arr is access all int_Arr_Obj;

type int_Arr_2_Obj is array (Natural range <>) of int_Arr;

type int_Arr_2 is access all int_Arr_2_Obj;

type int_Arr_3_Obj is array (Natural range <>) of int_Arr_2;

type int_Arr_3 is access all int_Arr_3_Obj;

-- long array types: long [], long [][], long [][][]

type long_Arr_Obj is array (Natural range <>) of long;

type long_Arr is access all long_Arr_Obj;

type long_Arr_2_Obj is array (Natural range <>) of long_Arr;

type long_Arr_2 is access all long_Arr_2_Obj;

type long_Arr_3_Obj is array (Natural range <>) of long_Arr_2;

type long_Arr_3 is access all long_Arr_3_Obj;

-- float array types: float [], float [][], float [][][]

type float_Arr_Obj is array (Natural range <>) of float;

type float_Arr is access all float_Arr_Obj;

type float_Arr_2_Obj is array (Natural range <>) of float_Arr;

type float_Arr_2 is access all float_Arr_2_Obj;

type float_Arr_3_Obj is array (Natural range <>) of float_Arr_2;

type float_Arr_3 is access all float_Arr_3_Obj;

-- double array types: double [], double [][], double [][][]

type double_Arr_Obj is array (Natural range <>) of double;

type double_Arr is access all double_Arr_Obj;

type double_Arr_2_Obj is array (Natural range <>) of double_Arr;

type double_Arr_2 is access all double_Arr_2_Obj;

type double_Arr_3_Obj is array (Natural range <>) of double_Arr_2;

type double_Arr_3 is access all double_Arr_3_Obj;

end java;

Chapter 8: Mapping Java into Ada 39

8.6 Use of Limited-With Clauses by jvm2ada

Consider the following
public class C extends B implements I {

public D link;

...

}

When jvm2ada is invoked to process ‘C.class’ to create an Ada spec for C, it is difficult
to know whether reference type D is involved in a circular dependency with class C. First
of all, D.class may not even be available yet. Even if it were, classes C and D could be
involved in a complex circular relationship with other classes, some of which may not be
available. In addition, in the presence of circular dependencies there is no good reason for
using a with type clause in one package spec and a regular with clause in another.

There are three cases in which a class C refers to another class X :

1. C extends X.

2. C implements X.

3. X is used as a reference (e.g., a reference to an object or array of objects of type X).

In the first case, the Ada package spec corresponding to C needs to have a regular with

clause for the package spec corresponding to X. In all other cases a with type clause suffices.

As a result, jvm2ada will generate the following with and limited with clauses for the
class C above:

with B;

limited with I;

limited with D;

8.7 Java Packages

A Java package pack is mapped into an empty Ada package spec pack. For instance, Java
package java.lang is mapped into the following Ada spec:

package java.lang is

pragma Preelaborate;

end java.lang;

8.8 Java Classes

A Java class X.Y.D extending a class W.Z.B is mapped into an Ada package X.Y.D con-
taining a tagged type definition Typ that extends W.Z.B.Typ and a reference type definition
Ref as shown below:

with Java; use Java;

package X.Y.D is

pragma Preelaborate;

-- Type Declarations --

type Typ;

type Ref is access all Typ’Class;

40 GNAT User’s Guide Supplement for the JVM Platform

-- Array type declarations for X.Y.D

type Arr_Obj is array (Natural range <>) of Ref;

type Arr is access all Arr_Obj;

type Arr_2_Obj is array (Natural range <>) of Arr;

type Arr_2 is access all Arr_2_Obj;

type Arr_3_Obj is array (Natural range <>) of Arr_2;

type Arr_3 is access all Arr_3_Obj;

-- The actual type declaration for X.Y.D

type Typ is new W.Z.B.Typ

with record

-- Field Declarations --

...

end record;

-- Constructor Declarations --

...

-- Method Declarations --

...

-- Variable Declarations --

...

private

pragma Convention (Java, Typ);

... -- other pragmas are generated here

end X.Y.D;

pragma Import (Java, X.Y.D, "W.Z.B");

In addition, all of the static variables of X.Y.D are mapped into variables of the Ada package
and all static methods of X.Y.D are mapped into nondispatching subprograms in the Ada
package.

Each instance method of class X.Y.D is converted into a primitive operation of type
X.Y.D.Typ whose first parameter is of type “access Typ” and whose remaining parameters
are as in the Java class.

Constructors in class X.Y.D are mapped into subprograms in package X.Y.D as described
in a previous section (see Section 7.3 [The Java Constructor Pragma], page 24).

8.9 Abstract Classes

Java’s abstract classes are exactly equivalent to Ada’s abstract tagged types and are mapped
into such types by jvm2ada.

Chapter 8: Mapping Java into Ada 41

8.10 Nested Classes

A class Inner nested inside a class Outer is mapped into a child package named
Outer.Inner.

8.11 Java Interface

See Section 7.1 [Creating Java Interfaces with Pragma Java Interface], page 19.

8.12 Java Class Implementing Interfaces

See Section 7.2 [Using Java Interfaces], page 21.

8.13 Java Exceptions

When processing a JVM class, jvm2ada must figure out whether this class is a Java excep-
tion, i.e. whether it derives, directly or indirectly from class java.lang.Throwable.

To determine this, jvm2ada traverses the inheritance tree and must locate the ‘.class’
files of the ancestor classes (see Section 6.5 [Class File Search Paths], page 17). If the class
is indeed a Java exception, an Ada exception is added to the generated Ada spec as shown
in the following example:

package pack1.pack2;

public class C extends java.lang.Throwable { ... }

is mapped into

package pack1.pack2.C is

...

Except : Exception;

...

end pack1.pack2.C;

8.14 Static Fields

A static field in Java is equivalent to a regular variable in Ada and is mapped accordingly
by jvm2ada.

8.15 Final Static Fields

A Java final static field is equivalent to an Ada constant. When importing a final static
field from Java, jvm2adamaps each such field to an Ada deferred constant with an associated
pragma Import Java.

8.16 Instance Fields

An instance field is mapped by jvm2ada into a field of its corresponding tagged type.

8.17 Volatile and Transient Fields

The JVM volatile and transient attributes are currently ignored by jvm2ada.

42 GNAT User’s Guide Supplement for the JVM Platform

8.18 Static Methods

A Java static method is equivalent to a regular nondispatching subprogram in Ada and is
mapped that way by jvm2ada.

8.19 Instance Methods

Each instance method is converted into a primitive operation whose first parameter is of
type “access Typ” and whose remaining parameters are as given for the Java method.

8.20 Abstract Methods

Java’s abstract methods are exactly equivalent to Ada’s abstract primitive operations and
are mapped accordingly by jvm2ada.

8.21 Native Methods

In Java one can assert that a certain method is native, i.e., that its implementation is
provided in some native language such as C or Ada, external to the JVM. The jvm2ada tool
ignores the native attribute when mapping JVM methods into Ada, since JVM methods
are invoked in exactly the same way regardless of whether they have a native attribute.

8.22 Final Classes and Final Methods

Java has a way to restrict further derivation from a class type or further overriding of a
primitive operation. For instance, given

public class Base { ... }

public final class Deriv extends Base { ... }

it is possible to create subclasses of Base but not of Deriv, since Deriv is marked final.
Likewise, given

public class Base {

public int service_1 () { ... }

public final int service_2 () { ... }

}

it is possible to override method service_1 in every subclass of Base, whereas service_2
cannot be overriden.

Limiting type derivation and primitive operation overriding is not directly possible in
Ada. We have therefore chosen for the time being to ignore final classes and methods (a
comment is emitted before them but nothing more). If a Java final class is extended or a
final method overridden in Ada, an exception (or verifier error) will be emitted at execution
time.

8.23 Visibility Issues

• A public Java class is mapped into a public Ada package spec.

• A non-public Java class containing public nested classes is mapped into an empty Ada
package (much in the same way Java packages are mapped into Ada packages). This
ensures that the parent Ada package is defined for the child classes.

Chapter 8: Mapping Java into Ada 43

• A public Java member is mapped into an entity declared in the public part of the
corresponding Ada package if all of its parameter and return types refer to a public
Java class.

• A protected Java member is mapped into an entity declared in the public part of the
corresponding Ada package and treated like a public Java member as described in
the above bullet point. Because in Ada there is no concept similar to the protected

qualifier in Java, if you use a protected entity from Ada in a way that is forbidden by
the JVM a run-time exception will occur.

• A private Java member corresponds to an Ada entity declared in a package body.
jvm2ada ignores all such entities.

• Java entities declared as non-public (i.e. with no Java access qualifiers) are visible only
to Java classes belonging to the same Java package and are intended to be accessed
only from classes in the same API as C. jvm2ada ignores all such entities.

8.24 Java Implicit Upcasting in Ada

Given the following two class definitions:

public class Base {

public static void proc (Base p, Base q) {...}

}

public class Derived extends Base {...}

Java allows the following code to be written (and Java programmers take advantage of the
following):

Base obj1 = new Base ();

Derived obj2 = new Derived ();

proc (obj1, obj2);

The implicit conversion from the pointer to the Derived type to the Base type is completely
safe and is allowed in Java much as Ada allows implicit conversion between similar anony-
mous access types (in Java when you write "Derived obj2" you are really saying that obj2
is a pointer to an object of type Derived whose pointer type is anonymous). If jvm2ada
mapped class Base into:

package Base is

type Typ;

type Ref is access all Typ’class;

...

procedure proc (P1 : Base.Ref; P2 : Base.Ref);

...

end Base;

The call to proc in Ada would have to look like

obj1 : Base.Ref := new_Base;

obj2 : Derived.Ref := new_Derived;

proc (obj1, Base.Ref (obj2));

which is verbose (especially when using real class names) without any fundamental reason
(writing "proc (obj1, obj2.all’access)" would hardly be any terser). To address this
inconvenience we have used access parameters when generating the Ada equivalent to proc:

procedure proc (P1 : access Base.Typ’Class;

P2 : access Base.Typ’Class);

allowing us to write:

44 GNAT User’s Guide Supplement for the JVM Platform

obj1 : Base.Ref := new_Base;

obj2 : Derived.Ref := new_Derived;

proc (obj1, obj2);

The observant reader will notice that this new mapping into Ada of procedure proc is
not equivalent to the first one since in the case of access parameters Ada checks that the
parameters are not null (and an exception will be raised if they are).

This problem is worked around by disabling the null access check in package specs
imported from Java. Note that this is a temporary expedient until a solution to this
problem is agreed upon by the ISO WG9-sponsored Ada Rapporteur Group (ARG).

8.25 Mixing Ada Strings and Java Strings

To facilitate the use of regular Ada strings in Java routines we have added the following
type definition and subprograms to the body of package java.lang.String generated by
jvm2ada:

-- Java String to Ada String Conversion Routines --

type String_Access is access all Standard.String;

function "+" (S : java.lang.String.Ref) return String_Access;

function "+" (S : Standard.String) return java.lang.String.Ref;

With the above you can write:

procedure P (JS : java.lang.String.Ref);

function F return java.lang.String.Ref;

S_Ptr String_Access := +F;

P (+"hello GNAT for the JVM");

Chapter 8: Mapping Java into Ada 45

8.26 An Example

As an example consider the following Java class

package A.B;

public class Foo

extends java.awt.event.ComponentAdapter

implements java.io.Serializable

{

// Instance Variables

public int i_Field;

public float f_Filed;

// Constructors

public Foo () {}

public Foo (java.lang.String s) {}

// Instance Methods

public void first_op (java.lang.Thread t) {}

public int second_op () {return 1;}

// Static Variables

public static int i_Var;

public static float f_Var;

// Static Methods

public static void proc (Foo obj, int [] b) {}

public static int funct (Foo [][] a, int l, int h) {return 1;}

}

After processing this class using the following jvm2ada command (java-dir is the location
of Sun’s JDK 1.2 installation):

jvm2ada -Ljava-dir/jdk1.2.2/jre/lib/rt.jar Foo.class

we obtain the following Ada spec (comments in italics have been added for explanatory
purposes):

with Java; use Java;

with java.awt.event.ComponentAdapter;

with type java.awt.event.ComponentListener.Ref is access;

with type java.io.Serializable.Ref is access;

with type java.lang.String.Typ is tagged;

with type java.lang.Thread.Typ is tagged;

package A.B.Foo is

pragma Preelaborate;

-- Type Declarations --

type Typ;

type Ref is access all Typ’Class;

46 GNAT User’s Guide Supplement for the JVM Platform

type Arr_Obj is array (Natural range <>) of Ref;

type Arr is access all Arr_Obj;

type Arr_2_Obj is array (Natural range <>) of Arr;

type Arr_2 is access all Arr_2_Obj;

type Arr_3_Obj is array (Natural range <>) of Arr_2;

type Arr_3 is access all Arr_3_Obj;

type Typ

(ComponentListener_I : java.awt.event.ComponentListener.Ref;

-- In the Ada mapping all implemented interfaces must appear

-- in the list of discriminants. The discriminats corresponding

-- to those inherited from the parent type (in this case

-- Component_Listener) must be used to constrain the parent

-- type in the Ada tagged type definition.

Serializable_I : java.io.Serializable.Ref)

is new

java.awt.event.ComponentAdapter.Typ (ComponentListener_I)

with record

-- Field Declarations --

i_Field : java.Int;

pragma Import (Java, i_Field, "i_Field");

f_Filed : java.Float;

pragma Import (Java, f_Filed, "f_Filed");

end record;

-- Constructor Declarations --

function new_Foo (This : Ref := null)

return Ref;

function new_Foo (P1 : access java.lang.String.Typ’Class;

This : Ref := null)

return Ref;

-- Method Declarations --

procedure first_op (This : access Typ;

P1 : access java.lang.Thread.Typ’Class);

function funct (P1 : A.B.Foo.Arr_2;

P2 : java.Int;

P3 : java.Int)

return java.Int;

procedure proc (P1 : access A.B.Foo.Typ’Class;

P2 : java.Int_Arr);

Chapter 8: Mapping Java into Ada 47

function second_op (This : access Typ)

return java.Int;

-- Variable Declarations --

i_Var : Java.Int;

f_Var : Java.Float;

private

pragma Convention (Java, Typ);

pragma Java_Constructor (new_Foo);

pragma Import (Java, first_op, "first_op");

pragma Import (Java, funct, "funct");

pragma Import (Java, proc, "proc");

pragma Import (Java, second_op, "second_op");

pragma Import (Java, i_Var, "i_Var");

pragma Import (Java, f_Var, "f_Var");

end A.B.Foo;

pragma Import (Java, A.B.Foo, "A.B.Foo");

The following code shows you how to use Foo’s services in your code.

with java.lang.String; use java.lang.String;

with A.B.Foo; use A.B.Foo;

use A.B;

use Java;

procedure Client is

O : Foo.Ref := new_Foo (+"hello there");

AO : Foo.Arr_2 :=

new Foo.Arr_2_Obj’

(0..9 =>

new Foo.Arr_Obj’ (0..3 => new_Foo));

I : int := funct (AO, AO’Last, 7);

AI : Java.Int_Arr := new Java.Int_Arr_Obj (0..5);

begin

proc (O, AI);

end Client;

Chapter 9: Creating Gnapplets with GNAT 49

9 Creating Gnapplets with GNAT

This chapter explains how you can use GNAT to create a “gnapplet” (GNAT applet).

The examples provided with your GNAT installation contain a couple of gnapplet examples.
This chapter explains the steps that you need to take to create your own gnapplets.

9.1 Extending java.applet.Applet.Typ

The first thing you need to do to create an applet is to extend java.Applet.Applet.Typ

as shown in the followng example:

with java; use java;

with java.applet.Applet;

with java.awt.Graphics;

package Animate is

-- Typ implements the same interfaces as Applet.Typ and no

-- new interfaces, so we do not need to add discriminants to the

-- type definition below.

type Typ is new java.applet.Applet.Typ with record

Count : Integer;

end record;

type Ref is access all Typ’Class;

procedure Init (This : access Typ);

procedure Start (This : access Typ);

procedure Stop (This : access Typ);

procedure Destroy (This : access Typ);

private

pragma Convention (Java, Typ);

end Animate;

In addition to extending java.applet.Applet.Typ, some functions from
java.applet.Applet need to be overridden, namely:

procedure Init (This : access Typ);

-- This function is called the first time the JVM initializes the

-- the applet. This is where you should put your own initializations

-- as well as the call to the elaboration code for the Ada runtime

-- library, as shown in the next section.

procedure Start (This : access Typ):

procedure Stop (This : access Typ);

-- These routines are called when your applet starts or stops

-- running (e.g., when it becomes visible to the user,

-- or when the user moves to another page)

procedure Destroy (This : access Typ);

-- Called by the browser or applet viewer to inform this applet

-- that it is being reclaimed and that it should destroy any

-- resources that it has allocated. The stop method will always

-- be called before destroy.

-- A subclass of Applet should override this method if it has

-- any operation that it wants to perform before it is destroyed.

In addition you may want to override the following two methods:

50 GNAT User’s Guide Supplement for the JVM Platform

procedure Paint (This : access Typ;

Graphics : access Java.Awt.Graphics.Typ’Class);

-- Called every time the applet needs to be repainted.

-- Every drawing should be done on Graphics. See the Java API

-- documentation for more info.

procedure Update (This : access Typ;

G : access java.awt.Graphics.Typ’Class);

-- The AWT calls this method in response to a call to

-- repaintupdate or paint. See the Java API

-- documentation for more info.

9.2 Initializing and Finalizing the GNAT Runtime

When writing the code for your gnapplet you must remeber to initialize the GNAT runtime
upon startup of your applet. You must also remember to finalize the GNAT runtime upon
destruction of your applet. This is easy to do: you just need to call the routine Adainit

in method Init and the routine Adafinal in method Destroy. As usual Adainit and
Adafinal have been generated by jvm-gnatbind if switch -n is selected.

The only additional thing you need to know is the name of the class file where jvm-

gnatbind generates these routines. The name of this class file is ada_gnapplet-name, where
gnapplet-name is the name of the gnapplet package where java.applet.Applet.Typ was
derived.

As an example here is the body of methods Init and Destroy of the Animate gnapplet
example given in the previous section:

package body Animate is

...

procedure Init (This : access Typ) is

procedure Adainit;

pragma Import (Ada, Adainit, "ada_animate.adainit");

begin

Adainit;

-- other initializations go here, after the call to Adainit

end Init;

procedure Destroy (This : access Typ) is

procedure Adafinal;

pragma Import (Ada, Adafinal, "ada_animate.adafinal");

begin

-- other finalizations go here, before the call to Adafinal

Adafinal;

end Destroy;

...

end Animate

9.3 Compiling the Gnapplet

Once you have written your gnapplet, you need to compile it. This is done in the usual
fashion, except for the fact that because there is no main program you need to call the
binder and the linker by hand. As an example, to compile the gnapplet given in package
Animate given in the previous example you can type:

$ jvm-gnatmake animate

$ jvm-gnatbind -n animate.ali

Chapter 9: Creating Gnapplets with GNAT 51

$ jvm-gnatlink animate.ali

$ jarmake -o animate.jar animate$typ.class

The jarmake command is particularly important for packaging all the ‘.class’ files needed
by your gnapplet in a single zip archive.

9.4 Creating the HTML file

The last step before running your gnapplet is to create an HTML file that will be loaded into
your viewer or browser. This HTML file should include a special tag that indicates where
you want to run your applet, and what size its allotted window should be. The WIDTH and
HEIGHT parameters below are mandatory. The ARCHIVE parameter is only required when
you created a zip archive (as you did above with jarmake). As an example, a minimal html
file for the previous example could be:

<html><head></head></head>

<body>

<APPLET CODE="animate$typ.class"

ARCHIVE="animate.jar"

WIDTH=200 HEIGHT=200> </APPLET>

</body> </html>

Chapter 10: Debugging Ada Programs 53

10 Debugging Ada Programs

Because GNAT generates class files that are fully compliant with Sun’s JVM standard, you
can use any JVM debugger, such as Sun’s jdb, with GNAT.

The minor drawback of using a JVM debugger directly is that for those Ada constructs
that are not directly available in the Java programming language (e.g. attributes), you need
to know how GNAT compiles these into bytecode in order to retrieve their value.

The purpose of this chapter is precisely to explain how the GNAT compiler compiles Ada
contructs into bytecode so that you can use any Java debugger on your Ada application.

Note that this chapter is not yet complete. If you need to understand what the GNAT
compiler generates for a particular Ada construct which is not documented below, we suggest
running the command jvmlist -g on the generated JVM ‘.class’ files.

10.1 Ada Compilation Units and JVM Class Files

Unless pragma Export is used (see Section 7.5 [Pragma Export Java], page 30), lower-case
letters are used for the names of all JVM class files generated from the compilation of an Ada
unit. Likewise, the names of all of the entities generated inside a class file are lower-case.

The compilation of a nongeneric Ada library unit P always generates a JVM class file
(‘p.class’). In addition to the class file ‘p.class’, separate class files are emitted for each
nested exception, record type, and tagged type declared in unit P. More specifically:

• A subprogram library unit P is compiled into a JVM class file ‘p.class’ containing all
the objects and nondispatching operations defined inside P.

• The specification and body of a library package P are compiled into a single JVM class
file ‘p.class’ containing all of the objects and nondispatching operations defined in
the spec or body of P.

• Any tagged or untagged record type R declared inside a package or subprogram P

is treated like a static inner class in Java, that is, a new JVM class ‘p$r.class’ is
generated containing R’s fields as instance variables, and, if R is a tagged type, its
associated dispatching operations.

• A package Q nested inside an Ada unit P does not result in a separate class. Entities
declared within the nested package will generally be associated as members of the
containing library package’s class (except in the case of exceptions or type declarations
that, as usual, result in their own class). However, the names of the corresponding
fields and methods resulting from the nested package will be given expanded names
that include the name of the outermost library package followed by the names of any
enclosing nested packages, and where adjacent pairs of simple names in the expanded
are separated by dollar sign characters (e.g., ‘pqproc’).

• A child unit P.Q is compiled into the JVM class file ‘p$q.class’. All the rules described
here are applied recursively with respect to Q’s contents.

• A generic package instantiation R nested inside an Ada unit P is treated exactly like a
nested package.

• A generic subprogram instantiation S nested inside an Ada unit P treated exacly like a
nested subprogram.

54 GNAT User’s Guide Supplement for the JVM Platform

• An Ada exception E declared inside an Ada unit P is treated like a member class in
Java and is compiled into JVM class ‘p$e.class’.

• A task type or protected type T nested inside an Ada unit P is compiled into JVM
class file ‘p$t.class’.

• A subprogram N nested inside another subprogram P will be treated as a static method
of the enclosing library unit’s class and will be given an expanded name that includes
the names of any enclosing subprograms (e.g., ‘pkgpn’). In addition, a special class
will be generated for the nested subprogram’s enclosing subprogram to contain fields for
any objects of the enclosing subprogram that are referenced by the nested subprogram.
The name of this special Activation Record class is constructed by appending the prefix
‘__AR_’ to the name of the enclosing subprogram (e.g., ‘__AR_pkg$p’).

• Any other Ada type or construct X occurring inside an Ada unit P that needs to generate
a standalone JVM class will be compiled into ‘p$x.class’.

As an example, the compilation of the following package:

package Outer is

package Nested is

type Typ is tagged record

Field : Integer;

end record;

E : exception

end Nested;

type Rec is record

X : Float;

end record;

end Outer;

yields the following JVM class files: ‘outer.class’, ‘outer$nested$typ.class’,
‘outer$nested$e.class’, ‘outer$rec.class’.

10.2 Lexical Elements

All Ada identifiers are mapped into the corresponding lower case identifiers when generating
symbolic references for the JVM, unless pragma Export is used (but note that certain names
corresponding to internal entities generated by the GNAT front end may inlude upper-case
letters).

10.3 Enumeration Types

An Ada enumeration type is converted into a Java 1-byte, 2-byte, 4-byte or 8-byte integer
whose size best matches the value of the largest enumeration literal.

Character types are treated like regular Ada enumeration types. More specifically, an
Ada Character type is mapped into a Java byte, whereas an Ada Wide_Character type is
mapped onto the equivalent 2-byte Java char type.

An Ada boolean type is treated like a standard Ada enumeration type with 2 values and
is consequently mapped into a Java byte.

Chapter 10: Debugging Ada Programs 55

10.4 Integer Types

Each signed integer type is mapped into the smallest corresponding JVM integer type whose
size is able to represent all required integer values:

Short_Short_Integer is mapped into byte (1 byte)

Short_Integer " " " short (2 bytes)

Integer " " " int (4 bytes)

Long_Integer " " " long (8 bytes)

Long_Long_Integer " " " long (8 bytes)

Each modular type is also mapped into the smallest corresponding Java integer type whose
size is able to represent all required modular values.

10.5 Floating Point Types

The Ada predefined floating point types map very naturally onto Java’s IEEE 32-bit float
and IEEE 64-bit double:

Short_Float is mapped into float (4 bytes)

Float " " " float (4 bytes)

Long_Float " " " double (8 bytes)

Long_Long_Float " " " double (8 bytes)

User-defined floating point types are mapped into Float where possible, and Long_Float

otherwise.

Chapter 11: Limitations 57

11 Limitations

Due to constraints of the JVM environment, or to implementation limitations, GNAT only
supports a subset of the Ada language and GNAT run-time.

Language constructs not supported:

• Types imported from Java do not support enumeration attributes (e.g. ’Image)

• Exception streams and attributes

• Representation items (13.1)

• pragma Pack (ignored) (13.2)

• Representation attributes (13.3)

• Record layout (13.5)

• Machine Code Insertions (13.8)

• Unchecked_Conversion between different non scalar types (13.9)

• Limited support on Ada.Streams package (13.13)

• ’Size attribute on non scalar objects

• ’Storage_Size attribute on non-task objects

• ’First_Bit, ’Last_Bit, ’Position attributes

• ’External_Tag attribute

• ’Pred, ’Succ attribute for modular types

• ’Version and ’Body_Version attributes

• Limited support of the ’Val attribute

• Function returning unconstrained array will have wrong ’First and ’Last

• User-defined Storage Pools

• Limited support for controlled types

• ’Address on non-aliased, non-local objects

• System.Address comparisons, other than "=" and "/="

• Some forms of scalar object renaming (e.g. renaming of dereferenced

access value)

• Pragmas Import, Export, and Convention other than Ada and Java

• Pragma Interrupt_Handler, Attach_Handler

• Asynchronous abort of tasking constructs and tasks

• Access-to-protected-subprogram types

• Incomplete types completed in package bodies

• Wide_String and Wide_Wide_String (e.g. ACATS test c250001)

• Null arrays with multiple dimensions

Switches not supported:

• -gnatE (dynamic elaboration)

Run-time units not supported:

58 GNAT User’s Guide Supplement for the JVM Platform

• Ada.Sequential IO.C Streams, Ada.Storage IO, Ada.Text IO.C Streams,
Ada.Wide Text IO.C Streams, Ada.Direct IO.C Streams

• Ada.Real Time.Timing Events

• Ada.Asynchronous Task Control

• Ada.Command Line.Environment

• Ada.Directories

• Ada.Exceptions.Traceback

• Ada.Interrupts,

• Ada.Task Attributes,

• Ada.Task Termination,

• Interfaces.C.Extensions, Interfaces.Cobol, Interfaces.C.Pointers, Interfaces.CPP, Inter-
faces.C.Strings, Interfaces.Fortran, Interfaces.Packed Decimal

• Machine Code, System.Machine Code

• GNAT.Altivec

• GNAT.Array Split

• GNAT.Lock Files, GNAT.Socket

• GNAT.Exceptions, GNAT.Expect, GNAT.AWK, GNAT.CGI, GNAT.CRC32,
GNAT.MD5, GNAT.SHA1, GNAT.Spitbol

• GNAT.Byte Swapping

• GNAT.Calendar

• GNAT.Command Line

• GNAT.Compiler Version

• GNAT.Current Exception, GNAT.Debug Pools, GNAT.Debug Utilities,
GNAT.Exception Actions, GNAT.Exception Traces, GNAT.Memory Dump

• GNAT.Dynamic Tables

• GNAT.Float Control

• GNAT.IO

• GNAT.OS Lib

• GNAT.Perfect Hash Generators

• GNAT.Secondary Stack Info

• GNAT.Table

• GNAT.Task Stack Usage

• GNAT.Time Stamp

• GNAT.Thread, GNAT.Signal

• GNAT.String Split, GNAT.Wide String Split, GNAT.Wide Wide String Split
GNAT.Traceback

Index 59

Index

-
-c (jvm2ada) . 9
-I (jvm2ada) . 15
-j (jarmake) . 13
-k (jarmake) . 13
-k (jvm2ada) . 15
-L (jarmake) . 13
-L (jvm2ada) . 15
-m (jarmake) . 13
-n (jarmake) . 14
-o (jarmake) . 14
-o (jvm2ada) . 15
-q (jarmake) . 14
-q (jvm2ada) . 9, 10, 11, 15
-s (jvm2ada) . 16
-v (jarmake) . 14
-v (jvm2ada) . 16

-w (jvm2ada) . 16

C
Conventions . 2

J
jarmake . 13
jvm2ada . 15
jvmlist . 9
jvmstrip . 11

T
Typographical conventions . 2

i

Table of Contents

About This Guide . 1
What This Guide Contains . 1
What You Should Know Before Reading This Guide 2
Related Information . 2
Conventions . 2

1 Getting Started with GNAT for the JVM 3
1.1 Overview . 3
1.2 GNAT Tools . 3
1.3 Java Development Kits that you can use with GNAT 4
1.4 Compiling Your First Application with GNAT 4

2 Ada & Java Interoperability 7
2.1 Importing Java Services to Ada . 7
2.2 Exporting Ada Services to Java . 7

3 Viewing Class Files with jvmlist 9
3.1 Running jvmlist . 9
3.2 Switches for jvmlist . 9

4 Stripping Debug Info with jvmstrip 11
4.1 Running jvmstrip . 11
4.2 Switches for jvmstrip . 11

5 Building Archives with jarmake 13
5.1 Running jarmake . 13
5.2 Switches for jarmake . 13

6 Using the Java API with jvm2ada 15
6.1 Running jvm2ada . 15
6.2 Switches for jvm2ada . 15
6.3 Running jvm2ada on the Java API . 16
6.4 Parameter Names and Source Search Paths . 17
6.5 Class File Search Paths . 17
6.6 Identifier Mangling . 18

ii GNAT User’s Guide Supplement for the JVM Platform

7 Java-Specific Pragmas . 19
7.1 Creating Java Interfaces: Pragma Java_Interface 19
7.2 Using Java Interfaces . 21
7.3 The Java_Constructor Pragma . 24

7.3.1 Background on Java Constructors . 24
7.3.2 Using Java Constructors in Ada . 25
7.3.3 Java Constructors and Ada Allocators . 27

7.4 Pragma Import Java . 28
7.4.1 Importing Packages . 28
7.4.2 Importing Exceptions . 29
7.4.3 Importing Record Components . 29
7.4.4 Importing Dispatching Subprograms . 30
7.4.5 Importing Objects . 30
7.4.6 Importing Non-Dispatching Subprograms 30

7.5 Pragma Export Java . 30
7.5.1 Exporting Objects, Subprograms, and Record Components

. 31
7.5.2 Exporting Exceptions . 31
7.5.3 Exporting Packages or Record Types . 32

8 Mapping Java into Ada . 33
8.1 Identifiers . 33
8.2 Scalar Types . 33
8.3 Java References and java.lang.Object . 33
8.4 Array Types . 35
8.5 The Ada Package Java . 37
8.6 Use of Limited-With Clauses by jvm2ada . 39
8.7 Java Packages . 39
8.8 Java Classes . 39
8.9 Abstract Classes . 40
8.10 Nested Classes . 41
8.11 Java Interface . 41
8.12 Java Class Implementing Interfaces . 41
8.13 Java Exceptions . 41
8.14 Static Fields . 41
8.15 Final Static Fields . 41
8.16 Instance Fields . 41
8.17 Volatile and Transient Fields . 41
8.18 Static Methods . 42
8.19 Instance Methods . 42
8.20 Abstract Methods . 42
8.21 Native Methods . 42
8.22 Final Classes and Final Methods . 42
8.23 Visibility Issues . 42
8.24 Java Implicit Upcasting in Ada . 43
8.25 Mixing Ada Strings and Java Strings . 44
8.26 An Example . 45

iii

9 Creating Gnapplets with GNAT 49
9.1 Extending java.applet.Applet.Typ . 49
9.2 Initializing and Finalizing the GNAT Runtime 50
9.3 Compiling the Gnapplet . 50
9.4 Creating the HTML file . 51

10 Debugging Ada Programs 53
10.1 Ada Compilation Units and JVM Class Files 53
10.2 Lexical Elements . 54
10.3 Enumeration Types . 54
10.4 Integer Types . 55
10.5 Floating Point Types . 55

11 Limitations . 57

Index . 59

	About This Guide
	What This Guide Contains
	What You Should Know Before Reading This Guide
	Related Information
	Conventions

	Getting Started with GNAT for the JVM
	Overview
	GNAT Tools
	Java Development Kits that you can use with GNAT
	Compiling Your First Application with GNAT

	Ada & Java Interoperability
	Importing Java Services to Ada
	Exporting Ada Services to Java

	Viewing Class Files with jvmlist
	Running jvmlist
	Switches for jvmlist

	Stripping Debug Info with jvmstrip
	Running jvmstrip
	Switches for jvmstrip

	Building Archives with jarmake
	Running jarmake
	Switches for jarmake

	Using the Java API with jvm2ada
	Running jvm2ada
	Switches for jvm2ada
	Running jvm2ada on the Java API
	Parameter Names and Source Search Paths
	Class File Search Paths
	Identifier Mangling

	Java-Specific Pragmas
	Creating Java Interfaces: Pragma Java_Interface
	Using Java Interfaces
	The Java_Constructor Pragma
	Background on Java Constructors
	Using Java Constructors in Ada
	Java Constructors and Ada Allocators

	Pragma Import Java
	Importing Packages
	Importing Exceptions
	Importing Record Components
	Importing Dispatching Subprograms
	Importing Objects
	Importing Non-Dispatching Subprograms

	Pragma Export Java
	Exporting Objects, Subprograms, and Record Components
	Exporting Exceptions
	Exporting Packages or Record Types

	Mapping Java into Ada
	Identifiers
	Scalar Types
	Java References and java.lang.Object
	Array Types
	The Ada Package Java
	Use of Limited-With Clauses by jvm2ada
	Java Packages
	Java Classes
	Abstract Classes
	Nested Classes
	Java Interface
	Java Class Implementing Interfaces
	Java Exceptions
	Static Fields
	Final Static Fields
	Instance Fields
	Volatile and Transient Fields
	Static Methods
	Instance Methods
	Abstract Methods
	Native Methods
	Final Classes and Final Methods
	Visibility Issues
	Java Implicit Upcasting in Ada
	Mixing Ada Strings and Java Strings
	An Example

	Creating Gnapplets with GNAT
	Extending java.applet.Applet.Typ
	Initializing and Finalizing the GNAT Runtime
	Compiling the Gnapplet
	Creating the HTML file

	Debugging Ada Programs
	Ada Compilation Units and JVM Class Files
	Lexical Elements
	Enumeration Types
	Integer Types
	Floating Point Types

	Limitations
	Index

