GNATemulator Documentation
Release 2018 (20180523)

AdaCore

May 24, 2018

CONTENTS

Introduction 3
1.1 About GNATemulator e 3
1.2 Product Content i i e e e e e e e e e e e 3
1.3 Note on the Documentation it e 3
Getting Started 5
2.1 Installation oL e e e e e e e e e e e e e 5
2.2 Setting your €nVIrONMENt v v v v vttt e e e e e e e e e e e e e e e e e e 5
2.3 Runningtheexamples e e e 6
Using GNATemulator 13
3.1 Launching GNATemulator e 13
3.2 Displayingthehelp e 13
3.3 GNAT ProjectFile e e e e e e e 14
34 Debuggingo e e e e e e e e e e e e 14
3.5 Redirecting serial port(s) oL e 16
3.6 Connecting to GNAT Busdevices ittt 17
377 Boardselection e e e e 17
3.8 Accesstohostfilesystem e e e e e e e 18
Workbench/VxWorks 653 Topics 19
4.1 Integration of the Simulation Environment in Workbench 19
4.2 Adapting QEMU for VxWorks 653 to other Contexts 20
43 LImitations oo e e e e e e e e e e e e e 20
4.4 Health Monitor Configuration 0 it e e e e e 21
VxWorks 6 Topics 23
5.1 BuildingaKernel. e 23
5.2 Running GNATemulator 0 e e e e e e e 24
5.3 Connecting Workbench to GNATemulator 25
54 Using the internal TEFTP server o 00 it e et 26
VxWorks 6 Cert Topics 29
6.1 BuildingaKernel. 29
6.2 Running GNATemulator i e e e e e e e e e e e 29
6.3 Runningtestson vxWorks Cert L e e e e e e e 30
Extending GNATemulator 31
7.1 Introduction e e e e e e 31
7.2 GNATBUS e e 31

8 Indices and tables

Index

43

45

GNATemulator Documentation, Release 2018 (20180523)

Contents:

CONTENTS 1

GNATemulator Documentation, Release 2018 (20180523)

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

1.1 About GNATemulator

Simulators are useful tools in many respects. Installation, setup and deployment to a development team will prove to
be easier and quicker than with a real target. Simulator usage on a native platform will also bring more flexibility in
the development of the application.

GNATemulator is particularly suited for functional testing and unit testing. The product comes with a complete
simulation environment and related BSP for non bareboard systems such as VxWorks 653. It allows for efficient target
code execution. It simulates a simple board and does not aim at complete board simulation. This should be mostly
transparent to the application developer as the differences between the real target and the simulator should be handled
and hidden by the platform provider.

1.2 Product Content

The product contains four components:

* The Simulator: This is the heart of the product. The main tool is called gnatemu and is prefixed by the
relevant target name. Under the hood it relies on the QEMU processor and board simulator. GNATemulator
efficiently runs the executable: the target code is translated on the fly, one basic block at a time, to the host
processor. The translated code is then kept in a cache so that no new translation is required when the execution
passes through a basic block that has been executed. An important point to keep in mind is that GNATemulator
is translating and executing instructions as fast as possible and thus won’t be cycle accurate. The clock used by
GNATemulator is the host system clock. Timing events are thus dependent on that clock and will not reflect
the timing characteristics of a real target board.

¢ The BSP: On non-bareboard systems, a BSP is provided when necessary. This is the case for example on
VxWorks 653. On that target we provide a BSP called gemu that should be installed in the VxWorks 653
installation. The BSP simulates a board with one UART (serial link), one ethernet controller, a timer, ROM and
128MB of RAM.

* GNAT Bus: A native framework to emulate devices (see Extending GNATemulator chapter).

* The examples: For each supported platform there are examples that can be used as a reference for further
development with GNATemulator

1.3 Note on the Documentation

As mentioned in the previous section the main tool name is:

GNATemulator Documentation, Release 2018 (20180523)

<target>-gnatemu

Along this documentation, in the sections that are not target specific we will use gnatemu for the tool name, skipping
the target prefix. In that cases always replace gnatemu by <target>-gnatemu where <target> is the relevant
target prefix for your context.

As a reminder here is the list of target supported by GNATemulator along with the expected tool name:

Platform Tool name

PowerPC e500v2 VxWorks 6.x | e500v2-wrs-vxworks-gnatemu
PowerPC VxWorks 6.x powerpc-wrs-vxworks-gnatemu
PowerPC VxWorks 653 powerpc-wrs-vxworksae-gnatemu
PowerPC ELF powerpc-elf-gnatemu

PowerPC 55xx and e500v2 ELF | powerpc-eabispe-gnatemu

LEON 2 ELF leon-elf-gnatemu

LEON 3 ELF leon3-elf-gnatemu

ARM ELF arm-eabi-gnatemu

AARCHG64 ELF aarch64-elf-gnatemu

4 Chapter 1. Introduction

CHAPTER
TWO

GETTING STARTED

2.1 Installation

On Windows host, installation is performed automatically by InstallShield. On Linux host, you will need first to
unpack the package using tar utility and then launch the doinstall script located at the toplevel directory. In
both cases, you will be prompted for an installation directory for the simulator and the example (later referred to as
GNATEMULATOR_INSTALL_DIR).

If you are using GNATemulator for VxWorks 653 then once the product is installed, you should
install the BSP in the VxWorks 653 installation. In order to do that you need to copy the
$GNATEMULATOR_INSTALL_DIR%\share\gnatemulator\ppc-vx653\bsp\gemu directory as
$WIND_BASE$\target\config\gemu.

Note that the PATH to the target BSP directory that you are copying to may be slighty different depending on your
version of VxWorks 653. Note in particular that this BSP uses the PPC604gnu toolchain, which is not available on
653 2.4; so this version of 653 is not supported. On 653 2.5, you will also need to add ne2000End.o to the library, for
instance by doing the following:

cd SWIND_BASES\target\lib
arppc x 1libPPC604gnuvx.a ne2000End.o
cp ne2000End.o objPPC604gnuvx\ne2000End.o

2.2 Setting your environment

In order to set your environment for GNATemulator you need to do on Windows:

’set PATH=%GNATEMULATOR_INSTALL_DIR%\bin; $PATHS ‘

And on Linux:

export PATH=$GNATEMULATOR_INSTALL_DIR/bin:$PATH ‘

Where GNATEMULATOR_INSTALL_DIR is the root directory of your installation.

If you need to build your own devices using GNATBus, then you should also do on Windows:

set ADA_PROJECT_PATH=%GNATEMULATOR_INSTALL_DIR%$\lib\gnat; $ADA_PROJECT_PATHS%

And on Linux:

GNATemulator Documentation, Release 2018 (20180523)

export ADA_PROJECT_PATH=$GNATEMULATOR_INSTALL_DIR/lib/gnat:S$ADA_PROJECT_PATH

Note that if GNATemulator has been installed in the same location as your native compiler then you don’t need to
modify ADA_PROJECT_PATH environment variable.

2.3 Running the examples

In the following subsections, small examples are described for each supported platforms except VxWorks 6.x. The
examples sources are located in $GNATEMULATOR_INSTALL_DIR%/share/examples/gnatemu/. To get
started on GNATemulator for VxWorks 6.x, you should go directly to VxWorks 6 Topics.

2.3.1 The VxWorks 653 example

First run

The example can be built using the make tool from the VxWorks Development Shell. Open
the VxWorks Development Shell, go to the directory where the example has been installed (
$GNATEMULATOR_INSTALL_DIR%/share/examples/gnatemu/ppc-vx653/sys653) and then type:

$ make

This command configures and builds the system. It generates a ROM image of the VxWorks 653 system in
int/demo/hello.flash.

To run the example in the simulation environment, type:

$ make run

To stop the simulator, press Control-Ax.

Structure of the Example

The example comprises 4 components, following the typical organization of a VxWorks 653 system:

* The Module OS is the kernel of the system and contains the BSP. It is configured and built in the mos subdirec-
tory. In the example the mos directory does not contain any source. There is just a Makefile whose purpose is
to build and configure the Module OS using existing VxWorks 653 libraries and GNATemulator BSP sources.
The Module OS is configured and compiled for a specific BSP/board, in this case the one described by the
gemu BSP.

To include tools useful during the development of your application (Target Tools), you should call make with
the following parameter:

]s make DEBUG=1 ‘

Should you need to reconfigure the Core OS (to include/exclude Target Tools for example), you should clean
the @file{mos} subdirectory first by calling:

’$ make clean ‘

6 Chapter 2. Getting Started

GNATemulator Documentation, Release 2018 (20180523)

in the mos directory. Calling make clean in the top-level example directory will clean the complete Vx-
Works 653 system. It removes the generated code and keeps the example infrastructure so the example can be
regenerated from scratch.

 The Partition OS is a passive partition (i.e. it will not execute code by itself) that contains the OS code to be
executed in the application partitions.

Like the mos directory, the pos directory in the example does not contain any source. There is just a Makefile
that is called to configure the partition (to define the size, the base virtual address and the functions that can be
called).

The compilation will generate a partition and stubs. The stubs will be linked with the application, allowing
access to POS services (see below).

* The Application. This example contains one application located in the app directory. Configuration related to
the application is minimal: only memory constraints are defined. To allow users to easily replace the example
code, a wrapper (appwrapper.c) is provided as the entry point of the application. The wrapper then calls
function helloinfile hello.c.

* The Integration. The components described above can be developed separately. The purpose of the integration
component is to agregate these components into the final system. The logic for the integration is in directory
int. The directory contains makefiles and configuration files to build the final ROM image that will be run by

the simulator.

2.3.2 The LEON 2 ELF Bareboard Example

This tutorial shows how to build an interactive example and run it with GNATemulator.

Compiling the example

The example comprises 3 small ada units:
* hello.adb, the main subprogram.
* uart.ads and uart.adb which perform I/O using the UART.

To build, simply invoke gprbuild in the example directory:

gprbuild —--target=leon-elf --RTS=ravenscar-sfp-leon

the option ‘—RTS=ravenscar-sfp-leon’ selects the small foot print ravenscar profile.

Running the example

To launch the example just run:

leon-elf-gnatemu hello

GNATemulator will automatically load the ELF file (hel10) and start execution at the entry point.

Here is a quick run scenario:

Menu:

1) Hello
2) Bye
3) Quit

2.3. Running the examples

GNATemulator Documentation, Release 2018 (20180523)

You choice:
1

hello

Menu:

1) Hello

2) Bye

3) Quit
You choice:
2

bye

Menu:

1) Hello

2) Bye

3) Quit
You choice:
3

gemu: fatal: Trap 0x80 while interrupts disabled, Error state

(The double trap which is an error is used to stop the simulator).

Redirecting the uart

It is possible to redirect the UART to a TCP port:

leon-elf-gnatemu --serial=tcp::1234,server hello

This will redirect UART1 to the TCP port 1234 of localhost. With the ‘server’ option, GNATemulator will wait for
the TCP connection.

2.3.3 The LEON 3 ELF Bareboard Example

This tutorial shows how to build an interactive example and run it with GNATemulator.

Compiling the example

The example comprises 3 small ada units:
* hello.adb, the main subprogram.
e uart.ads and uvart.adb which perform I/O using the UART.

To build, simply invoke gprbuild in the example directory:

gprbuild —-target=leon3-elf —--RTS=ravenscar-sfp-leon3

the option ‘~RTS=ravenscar-sfp-leon3’ selects the small foot print ravenscar profile.

Running the example

To launch the example just run:

leon3-elf-gnatemu hello

8 Chapter 2. Getting Started

GNATemulator Documentation, Release 2018 (20180523)

GNATemulator will automatically load the ELF file (he110) and start execution at the entry point.

Here is a quick run scenario:

Menu:

1) Hello

2) Bye

3) Quit

You choice:
1

hello

Menu:

1) Hello

2) Bye

3) Quit
You choice:
2

bye

Menu:

1) Hello

2) Bye

3) Quit
You choice:
3

gemu: fatal: Trap 0x80 while interrupts disabled, Error state

(The double trap which is an error is used to stop the simulator).

Redirecting the uart

It is possible to redirect the UART to a TCP port:

leon3-elf-gnatemu --serial=tcp::1234,server hello

This will redirect UART1 to the TCP port 1234 of localhost. With the ‘server’ option, GNATemulator will wait for
the TCP connection.

2.3.4 The PowerPC 55xx and e500v2 ELF Bareboard Example

This tutorial shows how to build an example and run it with GNATemulator.

Compiling the example

The example comprises 2 files:
¢ hello.adb, the main subprogram.
* hello.gpr, the project to build the program

To build, simply invoke gprbuild:

gprbuild --target=powerpc-eabispe -P hello.gpr —--RTS=xravenscar-full-p2020

2.3. Running the examples 9

GNATemulator Documentation, Release 2018 (20180523)

Running the example

To launch the example just run:

powerpc-eabispe-gnatemu hello

GNATemulator will automatically load the ELF file (he110) and start execution at the entry point.

2.3.5 The PowerPC ELF Bareboard Example

This tutorial shows how to build an example and run it with GNATemulator.

Compiling the example

The example comprises 2 files:
* hello.adb, the main subprogram.
* hello.gpr, the project to build the program

To build, simply invoke gprbuild:

gprbuild --target=powerpc-elf -P hello.gpr --RTS=ravenscar-full-prep

Running the example

To launch the example just run:

powerpc—elf-gnatemu hello

GNATemulator will automatically load the ELF file (he110) and start execution at the entry point.

2.3.6 The ARM ELF Bareboard Example

This tutorial shows how to build an example and run it with GNATemulator.

Compiling the example

The example comprises 2 files:

* hello.adb, the main subprogram.

¢ hello.gpr, the project to build the program
To build, simply invoke gprbuild:

gprbuild --target=arm-eabi -P hello.gpr —--RTS=ravenscar—-full-stm32f4

10 Chapter 2. Getting Started

GNATemulator Documentation, Release 2018 (20180523)

Running the example

To launch the example just run:

arm-eabi-gnatemu —--board=stm32f4 hello

GNATemulator will automatically load the ELF file (hel10) and start execution at the entry point.

2.3. Running the examples 11

GNATemulator Documentation, Release 2018 (20180523)

12 Chapter 2. Getting Started

CHAPTER
THREE

USING GNATEMULATOR

3.1 Launching GNATemulator

To launch a guest application just run:

’gnatemu hello

GNATemulator will automatically load the ELF file (hel1lo) and start execution at the entry point. Note that in the

VxWorks 653 and VxWorks 6.x case, the file passed to gnatemu is a full VxWorks kernel image.

To stop, press Control-a x.

3.2 Displaying the help

In order to list the available options you should run:

$ gnatemu --help
Usage: gnatemu [OPTIONS] FILE
Options are:

——-serial=file:FILENAME
redirect 1st serial port to a file
—-—-serial=tcp:HOST:PORT[, server]

—-—freeze-on-startup freeze emulation on startup
——gnatbus=HOST:PORT [, HOST:PORT]
connect a GNATBus device

—-—emulator-help display available Qemu options
—-—eargs start a group of Qemu options
—-—eargs-—-end end a group of Qemu options

-v, ——-verbose be verbose

-h, —-help display this help

-Pproj or -P proj Use GNAT Project File proj

-Xnm=val Specify an external reference for Project Files
—-—-version display version

—-serial=null redirect 1st serial port to null file
—--serial=stdio redirect 1st serial port to stdio

(write only)

redirect 1st serial port to HOST:PORT via tcp.

——serialN idem as —--serial for the Nth serial port

——tftp-root=path Set root directory of tftp server (default: .)

——wdb [=HOST_PORT] Set WDB redirection listen UDP port (default: 17185)

——gdb [=PORT] allow gdb connection on port PORT (default port is 1234)

-g allow default debug (i.e --wdb or --gdb —--freeze-on-startup

13

GNATemulator Documentation, Release 2018 (20180523)

3.3 GNAT Project File

Project attributes for GNATemulator are specified in package “Emulator”:

project Prj is
package Emulator is
end Emulator;

end Prj;

Supported attributes:
* Board: equivalent of switch ——board=
» Switches: A list of switches processed before the command line switches

For example:

package Emulator is

for Board use |"BOARD_NAME";

for Switches use ("Swl", "SWZE);
end Emulator;

3.4 Debugging

This section explains how to set up a debugging session with GNATemulator.

3.4.1 Debugging options in GNATemulator

GNATemulator provides various switches to ease debugging of guest applications. Here are the options that control
debugging

——gdb, --gdb=<PORT>
This flags will initiate the gdbserver and wait for gdb connection on port PORT. If not port is specified then the
default port 1234 is used. For example:

$ gnatemu —--gdb=2048 hello

—-—freeze-on-startup
Freeze the CPU at startup. When used GNATemulator will freeze simulation and wait for a continue com-
mand from gdb.

——wdb, —--wdb[=HOST_PORT]
Allow debugging with WindRiver Workbench debugger. If HOST_PORT is not passed then 17185 is used.

-g
This is a shortcut for ——gdb ——freeze—-on-startup on non VxWorks platforms. In VxWorks context this
is a shortcut for ——wdb.

3.4.2 Debugging with GDB

To debug with gdb:

14 Chapter 3. Using GNATemulator

GNATemulator Documentation, Release 2018 (20180523)

#. Invoke GNATemulator with the —g flag so that the emulator will stop and await a connection from gdb:

$ gnatemu -g hello

1. Invoke gdb and connect to GNATemulator with the GDB target command:

$ gdb hello
(gdb) target remote localhost:1234
(gdb)

We can use a bare-board target to illustrate these steps, in this case a LEON3, working with a simple “hello world”

program.

In one console we start the LEON3 version of the emulator:

$ leon3-elf-gnatemu —-g hello

The emulator is now waiting for the debugger to connect.

In another console we start the LEON3 version of the debugger:

$ leon3-elf-gdb hello

Reading symbols from hello...done.
(gdb)

In response gdb emits several lines of information, loads the image, and then prompts for another command.

Next, we instruct gdb to connect to the simulator over TCP:

(gdb) target remote localhost:1234
Remote debugging using localhost:1234
0x40000000 in trap_table ()

(gdb)

Again gdb responds and prompts for another command. We can have it show the source code, for example:

(gdb) 1list

1 with Ada.Text_TIO; use Ada.Text_IO;
2

3 procedure hello is

4 begin

5 Put_Line ("hello world");

6 end;

5

(gdb)

We set a breakpoint on line five:

(gdb) break hello.adb:5

As a result gdb will respond with an indication of the breakpoint being successfully set:

3.4. Debugging

15

GNATemulator Documentation, Release 2018 (20180523)

Breakpoint 1 at 0x40001004:
(gdb)

file C:\temp\0305-036\hello.adb,

line 5.

We can then command gdb to continue execution of the application:

(gdb) cont

Continuing.

Breakpoint 1, hello () at C:\temp\0305-036\hello.adb:5
5 Put_Line ("hello world");

(gdb)

In response, once the breakpoint is hit, gdb displays the breakpoint line and prompts us again. At this point the call to

Put_Line has not yet occurred. If we then issue the “step” command the call will occur:

(gdb) step
6 end;

Now gdb is ready to execute from line six.

In the other console we will see the message printed as part of the emulator execution:

$ leon3-elf-gnatemu —-g hello
hello world

We can continue debugging if there is more of the program, or simply tell gdb to quit. Quitting will break the

connection to the emulator and will cause it to terminate as well.

3.4.3 Debugging with GPS

To debug with GPS:
1. Run GNATemulator with —g flags:

$ gnatemu —-g hello

2. Read the GPS documentation, section “Working in a Cross Environment -> Debugger Issues” and use the

following configuration:

targetname: "localhost:1234"
protocol: "remote"

3.5 Redirecting serial port(s)

In GNATemulator it is possible to redirect the serial communication ports. In order to do that you need to use the

switch:

——serial=file:<FILE>, —--serial=tcp:<HOST>:<PORT>|[, server],

——serial=stdio,

——serial=null

Serial can be redirected to null, standard output, file (write only) or TCP port. Note that only one serial port can be
redirected to standard output. By default if you have several ports then the first one will be redirected to standard

output and the others to null.

16

Chapter 3. Using GNATemulator

GNATemulator Documentation, Release 2018 (20180523)

1. Redirection to standard output:

’$ gnatemu —--serial=stdio hello ‘

2. Redirection to null:

’$ gnatemu —--serial=null hello ‘

3. Redirection to a file (write only):

’$ gnatemu --serial=file:/tmp/serial_output.txt hello ‘

4. To a TCP port:

’$ gnatemu —--serial=tcp:hostname:1234 hello ‘

With the ‘server’ option, GNATemulator will wait for the tcp connection:

’$ gnatemu —--serial=tcp:hostname:1234, server hello ‘

The switch ——serial will redirect the first serial port. If there is more than one serial port on the target, you can
redirect them using:

—-seriall, --serial2, --serialN
where N is the number of your serial port. ——serial isequivalentto ——seriall

For example, the first serial to a file and the second to a TCP port:

$ gnatemu --serial=file:/tmp/seriall.txt --serial=tcp:localhost:1234 hello

As mentioned before, only one serial port can be redirected to the standard output. By default the first serial port is
redirected to that output except if another port has been assigned explicitly to it. In that case the first serial port is
redirected to null by default.

3.6 Connecting to GNAT Bus devices

In order to connect additional devices developed with GNAT Bus to your board you should use the following option:

——gnatbus=<HOST>:<PORT> [, <HOST2>:<PORT2>...]
For more in depth introduction to that feature please see Extending GNATemulator chapter.

3.7 Board selection

If GNATemulator provides multiple emulations for the target platform, use the following option to select a specific
board:

———board=<BOARD_NAME>

Use gnatemu —help to get the list of boards.

3.6. Connecting to GNAT Bus devices 17

GNATemulator Documentation, Release 2018 (20180523)

3.8 Access to host file system

(only for ppc-elf, p55-elf, leon-elf, leon3-elf, arm-elf, aarch64-elf)

GNATemulator provides a simplified version of the GNAT.OS_Lib package that allows access to the host file system

from the simulated program.

To use this package you have to include “hostfs_bareboard.gpr” into your project file:

with mhostfs_bareboard‘gprm;
project Test is

end Test;

You can then use the package in your project:

with GNAT.OS_Lib; use GNAT.OS_Lib;
with GNAT.IO; use GNAT.IO;

procedure Test is
FD : File_Descriptor;

constant String := "new_file.txt";
Text : String (1 .. 12) := "Hello World" & ASCII.LF;
begin
—-— Create a new file on the host file system
FD := Create_New_File (File_Name, GNAT.OS_Lib.Text);

if FD /= Invalid_FD then

if Write (FD, Text'Address, 12) /= 12 then
Put_Line ("Cannot Write '" & File_Name &
end if;

vvvu),.

Close (FD);

else
Put_Line ("Cannot create new file '" & File_Name & "'");
end if;
end Test;

Finally, when compiling your project you have to specify the board like so:

$ gprbuild —--target=leon3-elf -XGNATEMU_BOARD=leon3-elf test

18 Chapter 3

. Using GNATemulator

CHAPTER
FOUR

WORKBENCH/VXWORKS 653 TOPICS

4.1 Integration of the Simulation Environment in Workbench

4.1.1 Building a System

A VxWorks 653 system can be configured and built in the usual way, either from the command line or from within
Workbench. See the VxWorks 653 user manuals for general instructions, or the GNATbench tutorial available in
Workbench via Help —> Help Contents —> GNATbench Ada Development User Guide —> Tutorial: Creating a
VxWorks 653 Integration Project. If using the latter, follow the instructions given for a QEMU BSP.

4.1.2 Creating a ROM Image

The VxWorks 653 build system generates separate image files for each component. These images have to be gathered
into a single ROM image in order to be executed by GNATemulator. To simplify this unification procedure, we
provide the powerpc-wrs—vxworksae—-romgen tool. It automatically extracts the list of partitions and their
respective locations from the configRecord.xml file and uses this data to automatically build the final ROM
image.

To use generate a ROM image from a VxWorks 653 system under Workbench, add a build target, e.g.
gemu_system. flash to the integration project. Let’s call this build target KERNEL_IMAGE in further discus-
sion.

In the Makefile for the integration project, append KERNEL_ IMAGE to the prerequites of the all target, e.g.

all: <other targets> KERNEL_IMAGE

Then add a target for the image:

KERNEL_IMAGE: rom
powerpc-wrs—-vxworksae—-romgen —-o KERNEL_IMAGE

Note that the second line starts with a <tab> character, not spaces.

If using a Makefile for the integration project from the command line, you can omit the step of adding the build
target, and still make the changes to the Makefile.

4.1.3 Running the System

The simulator can easily be run from the Workbench interface. To do so:

1. Click on External Tools Configuration... in the menu entry Run — External Tools.

19

GNATemulator Documentation, Release 2018 (20180523)

Select Program and click on the New button.

In Location enter powerpc—-wrs—vxworksae—gnatemu with its full path (e.g.
$GNATEMULATOR_INSTALL_DIR%\bin\powerpc-wrs—-vxworksae-gnatemu.exe).

In the Working Directory browse to the directory containing KERNEL _IMAGE and select it.

In the Arguments section enter the arguments to pass to powerpc—wrs—vxworksae—gnatemu. See Using
GNATemulator for the available options. You should add ——wdb to enable target server connections.

Under the Build tab, uncheck Build before launch in order to avoid systematic recompilation when you start the
simulation environment.

Clicking on Run will save the configuration and run the system. The simulation platform can then be easily accessed
from the Workbench toolbar in the Advanced Development perspective via the green External Tools icon.

4.1.4 Creating a Target Server

The Wind River Debug Server (DFW) can connect to GNATemulator for VxWorks 653 using the wdbrpc backend
that will use the ethernet connection available in GNATemulator.

To create a new target server for GNATemulator for VxWorks 653:

1.
2.
3.

4.

Click on New Connection... in the Target menu of Workbench.
Select Wind River VxWorks 653 Target Server Connection as the system type.

In the Target Server Options page, select wdbrpc as the Backend, set the IP addressto 127.0.0 . 1 and the port
to 17185.

Set the Kernel image using the boot . txt file.

#. To complete the setup of the target server you can keep the other fields to their default values.

4.2 Adapting QEMU for VxWorks 653 to other Contextis

4.2.1 Starting QEMU for VxWorks Manually

You can start manually powerpc—wrs—vxworksae—gnatemu using these following options:

’$ powerpc-wrs—-vxworksae—-gnatemu [--wdb] KERNEL_IMAGE

Where KERNEL_ IMAGE is the path to your kernel image.

4.3 Limitations

The following elements should be taken into account when using GNAT Emulator for VxWorks 653:

1.

The time reported to the guest operating system (here VxWorks 653) is based on the host OS time. The host
OS is a time sharing OS (and not a real-time OS), which can lead to situations where QEMU is rescheduled
or preempted by another host process, which in turn makes the VxWorks 653 OS miss certain deadlines. That
may trigger error handlers in VxWorks 653. This means that you should avoid loading your host machine when
running QEMU.

See in Health Monitor Configuration an example of health monitor configuration that avoid unexpected simula-
tor halts.

20

Chapter 4. Workbench/VxWorks 653 Topics

GNATemulator Documentation, Release 2018 (20180523)

2. GNAT Emulator is translating and executing instructions as fast as possible and thus won’t be cycle accurate.
This means for example that within a frame defined by the active VxWorks 653 schedule, processing can be
faster than on the final target.

3. When GNAT Emulator is executing the VxWorks 653 operating system it will preempt all CPU available and
allowed by its priority. The rest of the Windows system may become hardly usable because of a lack of CPU
resources allocated to the rest of the system. This is particularly true on monocore host machines.

If you don’t have a multicore system, it is advised to start GNAT Emulator with the following command:

’> start /LOW powerpc-wrs-vxworksae—-gnatemu

4.4 Health Monitor Configuration

Here is an example of health monitor configuration that can be used to avoid a simulator stop in case of tick loss:

<HealthMonitor>
<SystemHMTable Name="systemHm">
<SystemState SystemState="HM_ PARTITION_MODE">
<ErrorIDLevel ErrorlIdentifier="HME_DEFAULT"
ErrorLevel="HM MODULE_LVL"/>
</SystemState>
<SystemState SystemState="HM_MODULE_MODE">
<ErrorIDLevel ErrorlIdentifier="HME DEFAULT"
ErrorLevel="HM MODULE_LVL"/>
</SystemState>
<SystemState SystemState="HM_ PROCESS_MODE">
<ErrorIDLevel ErrorlIdentifier="HME_APPLICATION_ERROR"
ErrorLevel="HM MODULE_LVL"/>
</SystemState>
</SystemHMTable>
<ModuleHMTable Name="moduleHm">
<SystemState>
<ErrorIDAction ErrorIdentifier="HME_DEFAULT"
ErrorAction="hmbDbg_DH_EventShow"/>
</SystemState>
<SystemState>
<ErrorIDAction ErrorIdentifier="HME_ APPLICATION_ERROR"
ErrorAction="hmDbg_DH_EventShow"/>

</SystemState>
<SystemState>
<ErrorIDAction ErrorIdentifier="HME_LOST_TICKS"
ErrorAction=""/>
</SystemState>
<Settings stackSize="0x0400" maxQueueDepth="2" />
</ModuleHMTable>
<PartitionHMTable Name="helloHm">
<SystemState>
<ErrorIDAction ErrorIdentifier="HME DEFAULT" ErrorAction=""/>
</SystemState>
<Settings stackSize="0x0400" maxQueueDepth="2" />
</PartitionHMTable>
</HealthMonitor>

4.4. Health Monitor Configuration 21

GNATemulator Documentation, Release 2018 (20180523)

22 Chapter 4. Workbench/VxWorks 653 Topics

CHAPTER
FIVE

5.1

VXWORKS 6 TOPICS

Building a Kernel

GNATemulator supports a specific BSP for VxWorks 6, the first step is to build a kernel with this BSP.

To create a VxWorks 6 kernel:

1

2.

b

N o s

8.

9.

In WorkBench: File -> New -> VxWorks Image Project
Enter project name (e.g. GNATemu_kernel), click Next

On GNATemulator for PowerPC e500v2 VxWorks 6.x, select the wrSbc8548 BSP, and on GNATemulator
for PowerPC VxWorks 6.x select the wrSbc834x BSP.

Select the gnu tool chain.
Click Next twice
Select Profile: PROFILE_DEVELOPMENT and click Finish
In the kernel configuration window for BSP wrSbc8548 profile:
(a) Exclude DRV_TIMER_OPENPIC
(b) Include INCLUDE_STANDALONE_SYM_TBL
(c¢) Include FOLDER_DOSFS2
(d) Set LOCAL_MEM_SIZE to 0x8000000 # Note 0x800_0000
(e) Set WIND_JOBS_MAX to 256
In the kernel configuration window for BSP wrSbc834x profile:
(a) Exclude INCLUDE_NET_DRV
(b) Include INCLUDE_NETSTAT
(c¢) Include INCLUDE_STANDALONE_SYM_TBL
(d) Include FOLDER_DOSFS2
(e) Set LOCAL_MEM_SIZE to 0x8000000 # Note 0x800_0000
(f) Set WIND_JOBS_MAX to 256
(g) Change IP addresses of DEFAULT_BOOT_LINE to h=192.168.0.1 e=192.168.0.2
On GNATemulator for PowerPC VxWorks 6.x
(a) Click on File -> Import...

(b) Select General -> File System and press Next

23

GNATemulator Documentation, Release 2018 (20180523)

(c) In the File System dialog, browse to following directory

<GNATEMULATOR_INSTALL_DIR>/share/gnatemu/<TARGET>/autoexec

(d) Press OK

(e) Press Select All then Finish

(f) Answer Yes To All in the Overwrite... dialog box

10. To build the kernel run: Project -> Build Project

You can find the kernel image at <PROJECT_ROOT_DIR>/Default/VxWorks.

5.2 Running GNATemulator

5.2.1 Downloadable Kernel Module

GNATemulator takes the DKM (.out) as last command line argument, automatically loads and runs it and then

stop execution.

Hello world!
</runkernel>

CPU:

Runtime Name:
Runtime Version:
BSP version:
Created:

ED&R Policy Mode:
WDB Comm Type:
WDB:

Adding 6942 symbols for standalone.

VxWorks

Copyright 1984-2012 Wind River Systems, Inc.

Wind River SBC8349E
VxWorks

6.9

6.9/0

Dec 1 2012, 19:28:15
Deployed
WDB_COMM_END

Agent Disabled.

cmdline: kernel print.out

Instantiating /tmp as rawFs, device = 0xl1
Formatting /tmp for DOSFS

Instantiating /tmp as rawFs, device = 0xl
Formatting...-> OK.

Mount ramdisk in /tmp...OK

copy host:print.out -> local:print.out

708798 byte(s) transferred

<runkernel print.out at addr=0x17567e0 1d=24468064>

$ powerpc-wrs-vxworks—gnatemu —--kernel=<PROJECT_ROOT_DIR>/Default/VxWorks print.out
Target Name: vxTarget

5.2.2 Interactive Mode

When there is no DKM on the command line, GNATemulator starts vx Works in interactive mode.

24

Chapter 5. VxWorks 6 Topics

GNATemulator Documentation, Release 2018 (20180523)

$ powerpc-wrs—-vxworks—gnatemu --kernel=<PROJECT_ROOT_DIR>/Default/VxWorks
Target Name: vxTarget

Adding 6942 symbols for standalone.

VxWorks
Copyright 1984-2012

CPU: Wind River SBC8349E
Runtime Name: VxWorks
Runtime Version: 6.9
BSP version: 6.9/0
Created: Dec 1 2012, 19:28:15
ED&R Policy Mode: Deployed
WDB Comm Type: WDB_COMM_END
WDB: Agent Disabled.

cmdline:
Instantiating /tmp as rawFs, device = 0xl
Formatting /tmp for DOSFS

Instantiating /tmp as rawFs, device = 0Oxl
Formatting...-> OK.

Mount ramdisk in /tmp...OK

Run_shell

—>

5.3 Connecting Workbench to GNATemulator

The Wind River Debug Server (DFW) can connect to GNATemulator using the wdbrpc back-end that will use the
Ethernet connection available in GNATemulator.

To create a new target server for GNATemulator and VxWorks 6:
1. Click on New Connection... in the Target menu of Workbench.
2. Select Wind River VxWorks 6.x Target Server Connection as the system type.

3. Inthe Target Server Options page, select wdbrpc as the Backend, set the IP addressto 127.0. 0. 1 and the port
to 17185.

. Set the Kernel image

. To complete the setup of the target server you can keep the other fields to their default values
. Start GNATemulator with the ——wdb option

. Note: INCLUDE_WDB_ALWAYS_ENABLED must be in kernel configuration.

~N O N A

$ powerpc-wrs-vxworks—-gnatemu --wdb --kernel=<PROJECT_ROOT_DIR>/Default/VxWorks

8. Click on Connect “..." in the Target menu.

5.3. Connecting Workbench to GNATemulator 25

GNATemulator Documentation, Release 2018 (20180523)

5.4 Using the internal TFTP server

GNATemulator ‘s internal TFTP server can be used to load file and executable on the target.
1. Open the kernel project created in Building a Kernel
2. In the kernel configuration window:
(a) Include INCLUDE_TFTP_CLIENT
(b) Include INCLUDE_IPTFTPC
(c¢) Include INCLUDE_IPTFTP_CLIENT_CMD
(d) Include INCLUDE_RAM_DISK
(e) Set RAM_DISK_SIZE to 16000000
(f) Set RAM_DISK_DEV_NAME to “/tmp”
3. In addition for the wrSbc834x BSP:

(a) Set DEFAULT_BOOT_LINE to “mottsec(0,0)host:target/config/wrSbc834x/vxWorks h=192.168.0.1
e=192.168.0.2 g=192.168.0.1 u=vxworks tn=wrSbc834x”

4. Re-build the kernel: Project -> Build Project
To use the TFTP in VxWorks:
1. Start GNATemulator
$ powerpc-wrs-vxworks—gnatemu —--wdb —--kernel=<PROJECT_ROOT_DIR>/default/vxWorks
2. In the VxWorks prompt, format the ram disk
-> dosFsVolFormat ("/tmp", 0, 0)
3. Change current directory
-> cd "/tmp"
4. Enter command mode
-> cmd
5. Use the tftp command to download a file
[vxWorks *]# tftp 192.168.0.1 get test.txt

Here is a complete example of TFTP session:

$ echo Test TFTP server > test.txt
$ powerpc-wrs—-vxworks—gnatemu --wdb —--kernel=<PROJECT_ROOT_DIR>/default/vxWorks

Instantiating /tmp as rawFs, device = 0xl1

Target Name: vxTarget

Instantiating /ram as rawFs, device = 0x10001

Formatting /ram for DOSFS

Instantiating /ram as rawFs, device = 0x10001
Formatting...Retrieved old volume params with %38 confidence:

Volume Parameters: FAT type: FAT32, sectors per cluster 0
0 FAT copies, 0 clusters, 0 sectors per FAT
Sectors reserved 0, hidden 0, FAT sectors 0
Root dir entries 0, sysId (null) , serial number 20000
Label:" "o,
Disk with 64 sectors of 512 bytes will be formatted with:
Volume Parameters: FAT type: FAT12, sectors per cluster 1

26 Chapter 5. VxWorks 6 Topics

GNATemulator Documentation, Release 2018 (20180523)

2 FAT copies, 54 clusters, 1 sectors per FAT
Sectors reserved 1, hidden 0, FAT sectors 2
Root dir entries 112, sysId VXDOS1l2 , serial number 20000
Label:" "
OK.

Adding 6717 symbols for standalone.

VxWorks
Copyright 1984-2012 Wind River Systems, Inc.

CPU: Wind River SBC8349E
Runtime Name: VxWorks
Runtime Version: 6.9
BSP version: 6.9/0
Created: Dec 1 2012, 19:28:15
ED&R Policy Mode: Deployed
WDB Comm Type: WDB_COMM_END
WDB: Agent Disabled.

-> dosFsVolFormat ("/tmp", 0, 0)
Formatting /tmp for DOSFS
Instantiating /tmp as rawFs, device = 0xl1
Formatting...Retrieved old volume params with %38 confidence:
Volume Parameters: FAT type: FAT32, sectors per cluster O
0 FAT copies, 0 clusters, 0 sectors per FAT
Sectors reserved 0, hidden 0, FAT sectors 0
Root dir entries 0, sysId (null) , serial number 11690000
Label:" "o
Disk with 31250 sectors of 512 bytes will be formatted with:
Volume Parameters: FAT type: FAT16, sectors per cluster 2
2 FAT copies, 15546 clusters, 62 sectors per FAT
Sectors reserved 1, hidden 0, FAT sectors 124
Root dir entries 512, sysId VXDOS1l6 , serial number 11690000
Label:" "

OK.

value = 0 = 0x0
-> cd "/tmp"
value = 0 = 0x0
-> cmd

[vxWorks *]# tftp 192.168.0.1 get test.txt
Transfer completed: 17 bytes in 0.0 seconds.
[vxWorks =]# cat test.txt

Test TFTP server

[vxWorks =*]#

5.4. Using the internal TFTP server

27

GNATemulator Documentation, Release 2018 (20180523)

28 Chapter 5. VxWorks 6 Topics

CHAPTER
SIX

6.1

VXWORKS 6 CERT TOPICS

Building a Kernel

GNATemulator supports a specific BSP for VxWorks 6 cert, the first step is to build a kernel with this BSP.

To create a VxWorks 6 cert kernel:

1.
2.

b

9.

® N s

In WorkBench: File -> New -> VxWorks Cert Image Project
Enter project name (e.g. GNATemu_kernel), click Next

On GNATemulator for PowerPC e500v2 VxWorks 6.x, select the wrSbc8548 BSP, and on GNATemulator
for PowerPC VxWorks 6.x select the wrSbc834x BSP.

Select the gnu tool chain.
Click Next
Select option with RTP support and click Next
Select a Profile and click Finish
In the kernel configuration window:
(a) Set LOCAL_MEM_SIZE to 0x8000000 # Note 0x800_0000

To build the kernel run: Project -> Build Project

You can find the kernel image at <PROJECT_ROOT_DIR>/Default/VxWorks.

6.2 Running GNATemulator

$ powerpc-wrs—-vxworks—gnatemu —-kernel=<PROJECT_ROOT_DIR>/Default/VxWorks

Copyright 1984-2011 Wind River Systems, Inc.
VxWorks Cert 6.6.4.1
Created: Jun 14 2013, 17:48:22

29

GNATemulator Documentation, Release 2018 (20180523)

6.3 Running tests on vxWorks Cert

To run a test on vxWorks Cert it has to be included in the kernel during build. SKMs linked to the kernel binary, RTPs
in a ROMFS. Then usrApplnit() must be modified to load and/or run the test. You will find procedures to do so in
WorkBench documentation. Note that theses procedures can be scripted using the vxprj command line tool.

30 Chapter 6. VxWorks 6 Cert Topics

CHAPTER
SEVEN

EXTENDING GNATEMULATOR

7.1 Introduction

GNAT Emulator provides a powerful interface to emulate your own devices and create a rich simulation environment.

With native simulation code communicating with the target through a socket, you will be able to emulate any piece of
hardware to make GNAT Emulator an exact representation of your target platform.

7.2 GNAT Bus

7.2.1 Overview
GNAT Bus is the link between your simulation environment and the emulator. You can regard GNAT Bus as the
simulation of an internal bus (such as AMBA or PCI) connected to the emulated platform through a bridge.
From the guest-executable point of view, the GNAT Bus devices are just like any other emulated peripheral.
GNAT Bus provides four main features:
1. Memory mapped 10

Devices can register memory mapped IO areas in the emulated address space. Each load/store instruction
executed by the CPU in an IO area will result in a call to the read/write callback of the corresponding device.

This can be used to share data structure between guest executable and the host environment.

2. Direct Memory Access
With Direct Memory Access (DMA) a device can read/write directly from/to the emulated memory.
This is useful to transfer large amount of data from/to the guest program.

3. Host Shared Memory (Available on Linux only)

Devices can register a shared host memory and map it in the emulated address space. Each load/store instruction
executed by the CPU in that area will be directly written in the shared memory. The device is able to use those
data. This allows faster communications between the virtual machine and the device.

4. Interrupt
From the device you can trigger interrupts on the emulated system.
* Raise interrupt line
* Lower interrupt line

* Pulse i.e. quickly raise and lower interrupt line

31

GNATemulator Documentation, Release 2018 (20180523)

Using the interrupt is thread safe, which means that the device can trigger an asynchronous IRQ at any time.

5. Event

You can also create a timer running in the emulation time. When the timer expires, the emulation stops and an
callback is executed in the device code.

GNAT

Emulation

System —

Emulator

Bus
Master

E

Emulated hardware
communication

(GNAT Bus)

High level simulation data

Simulation Environment

7.2.2 GNAT Bus connection

There are two ways to connect a device to GNAT Emulator
1. Named connection

In this mode the communication between the device and GNAT Emulator is done through a named connection
(Unix Domain socket on Linux and Named pipe on Windows).

On the device side use:

’ register_device_named (dev, "@my_device"); ‘

On command line:

’r:? gnatemu —--gnatbus=@my_device guest_uart ‘

2. TCP connection

In this mode the communication between the device and GNAT Emulator is done trough a TCP socket.

32 Chapter 7. Extending GNATemulator

GNATemulator Documentation, Release 2018 (20180523)

On the device side use:

register_device_tcp(dev, 8032); ‘

On command line:

’? gnatemu —--gnatbus=localhost:8032 guest_uart ‘

7.2.3 Tutorial: Create A GNAT Bus Device

To show how to use GNAT Bus, we will define and emulate a UART controller. For simplicity, the controller will
only be able to receive data.

You can write device code in C or Ada. This tutorial uses an Ada example but you can find the equivalent C example
in <PATH_TO_GNATEMULATOR>/share/examples/gnatemu/gnatbus/).

Interface definition

First, we have to define the interface of our device.

The registers implemented in the UART controller are listed in the following table. The address of each register is
defined as an offset to the base address:

Table 7.1: UART registers

Register Offset
UART Control | 0x0
UART Data 0x4

The following tables describe the fields of each register:

Table 7.2: UART Control register

Bit Field name Reset Ac- Description
number(s) state cess
0 En- 0 R/W If set an interrupt will be triggered for each character
able_Interrupt received
1 Data_To_Read | 0 R Set if there is at least one character to read
2-31 Reserved undefined
Table 7.3: UART Data register
Bit Field Reset Ac- Description
number(s) name state cess
0-7 Data 0 R Read received character when Data_To_Read is set, 0
otherwise.
8-31 Reserved undefined

Project environment setup

Next, we have to create our project directory tree:

7.2. GNAT Bus 33

GNATemulator Documentation, Release 2018 (20180523)

uart/
|-— obj/
‘—— src/

Then we create a project file uart /uart .gpr, with the following content (see the GPRBuild documentation for
detailed information on project files):

gnatbus_ada.gpr is a project distributed with GNAT Emulator, it contains the low-level circuitery (connec-
tion and communication with GNAT Emulator) and provides an abstaction layer so you just have to focus on the
simulation code.

package UART Controller

uart/src/uart_controller.ads
uart/src/uart_controller.adb

This package implements a UART_Cont rol protected object that contains the logic of our device (receive characters,
manage the FIFO list, set the Data_To_Read flag, trigger interrupt when needed).

We will not go through the details of the UART_Controller since those are outside the scope of
this tutorial. But you can find sources of this package in GNAT Emulator‘s examples directory
(<PATH_TO_GNATEMULATOR>/share/examples/gnatemu/gnatbus/uart).

package UART Device

uart/src/uart.ads
uart/src/uart.adb

To implement our UART device we create a class that inherits from the Bus_Device abstract class.

type UART Device (Vendor Id, Device_ Id : Id;
Base_ Address : Bus_Address;
Port : Integer)
is new Bus_Device (Vendor_TId, Device_Id, Port, Native_Endian) with record
UC : UART_Control;

—— The UART_Control protected object described earlier

end record;

The Vendor_Id, Device_Id and Port discriminants are required by the Bus_Device abstract type. Base_Address will
be used latter as the address of our I/O area.

The device will have to implement six subprograms to provide the required interface:
* Device_Setup
¢ Device_Init
* Device_Reset
¢ Device Exit

e JO_Read

34 Chapter 7. Extending GNATemulator

GNATemulator Documentation, Release 2018 (20180523)

¢ JO_Write
Let’s look in detail how these are used by GNAT Bus and how they are implemented in our UART example.

Device_Setup

overriding procedure Device_Setup (Self : in out UART_Device);

This subprogram has to register the I/O area(s) and perform any other initialization needed before the device is started.

Body of Device_Setup procedure for UART_Device:

procedure Device_Setup (Self : in out UART_Device) is
begin
Ada.Text_IO.Put_Line ("Device_Setup");

-— Register the only I/0O area: 8 bytes at base address to match the two
—-— registers.

Self.Register_TIO_Memory (Self.Base_Address, 8);
-— Set UART Device access in the UART _Control protected object

Self.UC.Set_Device (Self'Unchecked_ Access);
end Device_Setup;

Device_lInit

overriding procedure Device_Init (Self : in out UART_Device);

As implied by its name, this subprogram has to perform device initialization. It will be called only once, at the
beginning of emulation.

In our example there is nothing to do.

Body of Device_Init procedure for UART_Device:

procedure Device_Init (Self : in out UART_Device) is
pragma Unreferenced (Self);
begin

Ada.Text_IO.Put_Line ("Device_TInit");
end Device_Init;

7.2. GNAT Bus 35

GNATemulator Documentation, Release 2018 (20180523)

Device_Reset

overriding procedure Device_Reset

Qe

Self in out UART_Device);

(

This procedure will be called each time a CPU reset occurs in the emulator. A reset is also triggered at the beginning

of emulation (after Device_Init).

In our example, we have to flush the FIFO queue and set the registers to their reset value (this is handled by

UART_Control).

Body of Device_Reset procedure for UART_Device:

procedure Device_Reset
begin
Ada.Text_IO.Put_Line

Self.UC.Reset;
end Device_Reset;

Send the reset signal to the UART_Control

(Self in out UART_Device) is

("Device_Reset");

Device_Exit

overriding procedure Device_Exit

(Self in out UART_Device);

Device_Exit is called one time, at the end of emulation.

In our example there is nothing to do.

Body of Device_Exit procedure for UART_Device:

procedure Device_Exit (
pragma Unreferenced
begin
Ada.Text_TO.Put_Line
end Device_Exit;

is

Self

(Self);

in out UART_Device)

("Device_Exit");

10_Read

overriding procedure IO_

Address Bus_Addre

Read (Self in out UART_Device;
Address Bus_Address;
Length Bus_Address;
Value out Bus_Data);

ss

36

Chapter 7. Extending GNATemulator

GNATemulator Documentation, Release 2018 (20180523)

- Absolute address of the first byte targeted by this read operation.

—-— Length : Bus_Address
- Number of bytes targeted by this read operation (1, 2 or 4).

This procedure will be called when the CPU executes a load instruction in any of the I/O areas registered by the device.

The procedure must set Value according to the specification of the emulated device.
The procedure is usually implemented with a case statement with branches for each register.

Body of I0_Read procedure for UART_Device:

—— IO _Read —-

procedure IO_Read (Self : in out UART_Device;
Address : Bus_Address;
Length : Bus_Address;
Value : out Bus_Data) is

pragma Unreferenced (Length);
begin
Ada.Text_IO.Put_Line ("Read @ " & Address'Img);

—-— case statement on the relative address

case Address - Self.Base_Address is
when 0 =>
—-— Return value of the control register
Value := Self.UC.Get_CTRL;

when 4 =>
—-— Pop a byte from FIFO queue
Self.UC.Pop_DATA (Value);

when others =>
Ada.Text_IO.Put_Line ("Read unknown register:" & Address'Img);
Value := 0;
end case;
end I0O_Read;

10_Write
overriding procedure IO_Write (Self : in out UART_Device;
Address : Bus_Address;
Length : Bus_Address;
Value : Bus_Data);

—— Address : Bus_Address

—-— Length : Bus_Address
- Number of bytes targeted by this write operation (1, 2 or 4).

- Absolute address of the first byte targeted by this write operation.

This procedure is the equivalent of Read_ IO when store instructions are executed.

7.2. GNAT Bus

37

GNATemulator Documentation, Release 2018 (20180523)

Body of TO_Write procedure for UART_Device:

-— IO Write —-—

procedure IO_Write (Self : in out UART_Device;
Address : Bus_Address;
Length : Bus_Address;
Value : Bus_Data) is

pragma Unreferenced (Length);
begin
Ada.Text_IO.Put_Line ("Write @ " & Address'Img);

—-— case statement on the relative address

case Address - Self.Base_Address is
when 0 =>
-— Set Control register value
Self.UC.Set_CTRL (Value);

when others =>
Ada.Text_IO.Put_Line ("Write unknown register:" & Address'Img);
end case;
end IO_Write;

Main procedure

uart/src/main.adb

Finally, we need a main procedure to allocate and start our device. We also include a loop that sends a message to the
UART every second.

with UART; use UART;
with Ada.Text_IO;

procedure Main is
My_UART : UART.UART_Ref;

begin
My_UART := new UART.UART_Device (lo#ffff_ ffff#, —-—- Vendor Id
lo#aaaa_aaaa#, —— Device Id
16#8000_1000#, —-—- Base Address
8032) ; -— TCP Port

-— Start the Device loop

My_UART.Start;

-— Now we are ready to receive connection from GNATemulator
Ada.Text_IO.Put_Line ("Start Simulation™);

for Cnt in 1 .. 60 loop
My_UART.UC.Put ("Send Message: " & Cnt'Img & ASCII.LF);

38 Chapter 7. Extending GNATemulator

GNATemulator Documentation, Release 2018 (20180523)

delay 1.0;
end loop;

—-— Abort the device loop

My_UART.Kill;
end Main;

Note that the device’s TCP port is 8032 and its base address is hexadecimal 80001000.

Compilation

With all the source files prepared (main.adb, uart.adb, uart.ads, uart_controller.adb and
uart_controller.ads) we can build build the UART device program.

Add GNATBus's project files directory in ADA PROJECT _PATH

S export ADA PROJECT PATH=<PATH_TO_GNATEMULATOR> /1 ib/gnat :SADA_PROJECT_PATH

And run gprbuild

S gprbuild -Puart.gpr

We also have to ©build the guest executable. To do so, follow the instruction in

<PATH_TO_GNATEMULATOR>/share/examples/gnatemu/gnatbus/uart/guest_code/README.

Device connection and execution

To set up your simulation environment, you first have to start the device

&

5 ./gnatbus_uart

and then in another terminal, start GNAT Emulator with the GNAT Bus switch and a comma-separated list of “host-
name:port” items.

Our device uses port 8032.

$ leon3-elf-gnatemu —--gnatbus=localhost:8032 guest_uart

7.2.4 Sharing some host memory with the guest

Simulating some devices might require a lot of data to be loaded / stored. To improve performance GNATBus allow
to map in the guest address space some host memory. Hence there are less operations to share large chunk of memory.

7.2. GNAT Bus 39

GNATemulator Documentation, Release 2018 (20180523)

Directly Mapped

|
l GNAT

Emulator

e
3

o

Bus
Master

I
I
I
I
I
I
I
I h
I
I
I
I
I
I
I

Emulated hardware
communication

(GNAT Bus)

R .
» Device
Array Accessed

.

High level simulation data

Simulation Environment

Modifying the uart to output 1K of data in one shot

Mapping the memory is quite easy in the above GNATBus Device’s Device_Setup it only requires to register a shared

memory.

Body of Device_Setup procedure for UART_Device:

procedure Device_Setup (Self : in out UART_Device) is
begin
Ada.Text_IO.Put_Line ("Device_Setup");

-— Register the only I/0O area: 8 bytes at base address to match the two
-— registers.

Self.Register_IO_Memory (Self.Base_Address, 8);

—-— Register a 1K shared memory area called "/foo": it is directly
—-— mapped at 0x80002000 in the guest address space.

Self.Register_Shared_Memory (16#80002000#, 1024, "foo");

—-— Set UART _Device access in the UART_Control protected object

40 Chapter 7. Extending GNATemulator

GNATemulator Documentation, Release 2018 (20180523)

Self.UC.Set_Device (Self'Unchecked_ Access);
end Device_Setup;

The data is accessible on the device side as well. for example on a register write:

Body of TO_Write procedure for UART_Device:

-— IO Write —-—

procedure IO_Write (Self : in out UART_Device;
Address : Bus_Address;
Length : Bus_Address;
Value : Bus_Data) is

—-— Reading / Writing to Shm write to the host memory directly.

type Shm_Array is array (1 .. 1024) of aliased Interfaces.Unsigned_38;
Shm : Shm_Array;

pragma Suppress_Initialization (Shm);

—-— Calling this synchronize the Shm.

for Shm'Address use Self.Shm Map (Id => 0);

pragma Unreferenced (Length);
begin
Ada.Text_IO.Put_Line ("Write @ " & Address'Img);

—-— case statement on the relative address

case Address - Self.Base_Address is

when 0 =>
—-— Set Control register value
Self.UC.Set_CTRL (Value);

when 4 =>
—— Synchronize the Shm to ensure that all the write from the
-— simulator are synchronized. This is implemented as no-op on
—-— modern 0OS.. but is not guaranted to be optional by the
—— documentation.
Self.Shm_Sync (Id => 0);

for U in Shm'First .. Shm'Last loop
-— Do something with the data..
end loop;
when others =>
Ada.Text_IO.Put_Line ("Write unknown register:" & Address'Img);
end case;
end IO_Write;

7.2. GNAT Bus 4

GNATemulator Documentation, Release 2018 (20180523)

42 Chapter 7. Extending GNATemulator

CHAPTER
EIGHT

INDICES AND TABLES

* genindex

e search

43

GNATemulator Documentation, Release 2018 (20180523)

44 Chapter 8. Indices and tables

INDEX

Symbols

—board=<BOARD_NAME>
gnatemu command line option, 17
—freeze-on-startup
gnatemu command line option, 14
—gdb, —gdb=<PORT>
gnatemu command line option, 14
—gnatbus=<HOST>:<PORT>[,<HOST2>:<PORT2>...]
gnatemu command line option, 17
—seriall, —serial2, —serialN
gnatemu command line option, 17
—serial=file:<FILE>, —serial=tcp:<HOST>:<PORT>[,server],
—serial=stdio, —serial=null
gnatemu command line option, 16
—wdb, —wdb[=HOST_PORT]
gnatemu command line option, 14
g
gnatemu command line option, 14

A

ADA_PROJECT_PATH, 6

E

environment variable
ADA_PROJECT_PATH, 6
GNATEMULATOR_INSTALL_DIR, 5

G

gnatemu command line option
—Dboard=<BOARD_NAME>, 17
—freeze-on-startup, 14
—gdb, —gdb=<PORT>, 14
—gnatbus=<HOST>:<PORT>[,<HOST2>:<PORT2>...],
17
—seriall, —serial2, —serialN, 17
—serial=file:<FILE>, -
serial=tcp:<HOST>:<PORT>[,server], -
serial=stdio, —serial=null, 16
—wdb, —wdb[=HOST_PORT], 14
-g, 14
GNATEMULATOR_INSTALL_DIR, 5

45

	Introduction
	About GNATemulator
	Product Content
	Note on the Documentation

	Getting Started
	Installation
	Setting your environment
	Running the examples

	Using GNATemulator
	Launching GNATemulator
	Displaying the help
	GNAT Project File
	Debugging
	Redirecting serial port(s)
	Connecting to GNAT Bus devices
	Board selection
	Access to host file system

	Workbench/VxWorks 653 Topics
	Integration of the Simulation Environment in Workbench
	Adapting QEMU for VxWorks 653 to other Contexts
	Limitations
	Health Monitor Configuration

	VxWorks 6 Topics
	Building a Kernel
	Running GNATemulator
	Connecting Workbench to GNATemulator
	Using the internal TFTP server

	VxWorks 6 Cert Topics
	Building a Kernel
	Running GNATemulator
	Running tests on vxWorks Cert

	Extending GNATemulator
	Introduction
	GNAT Bus

	Indices and tables
	Index

