
GNAT-AJIS User’s Guide
GNAT Ada-Java Interfacing Suite

A Toolkit for GNAT, the GNU Ada Compiler
GNAT GPL Edition, Version 2010

AdaCore

Copyright c© 1995-2008, Free Software Foundation
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with the Invariant Sections
being “GNU Free Documentation License”, with the Front-Cover Texts being
“GNAT-AJIS User’s Guide” and “GNAT Ada-Java Interfacing Suite”, and with
no Back-Cover Texts. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

About This Guide
This guide describes the features and the use of GNAT-AJIS, the GNAT Ada-
Java Interfacing Suite that can be used with the GNAT Ada development envi-
ronment.

What This Guide Contains
This guide contains the following chapters:
• Chapter 1 [Getting Started with GNAT-AJIS], page 3, describes how to set

up your environment and illustrates the use of the GNAT-AJIS toolset
• Chapter 2 [Using ada2java to Generate Java Classes], page 9, describes

how to use ada2java to generate Java classes that can be used as a “thin
binding” to an Ada package specification.

• Chapter 3 [Mapping Ada to Java], page 15, describes how Ada features are
mapped to Java by ada2java .

• Chapter 4 [Advanced ada2java Topics], page 27, describes some of the ad-
vanced aspects of the mapping of Ada to Java.

• Chapter 5 [Using javastub to Generate Ada Package Specifications],
page 47, describes how to use the javastub utility.

• Chapter 6 [Using jvm2ada to Interface Ada with Java], page 49, describes
to use the jvm2ada utility.

• Appendix A [Using JNI Directly], page 51, describes how to write native
methods in Ada with the same low-level style as in C.

What You Should Know before Reading This Guide
Before reading this manual you should be familiar with the following:
• The Ada programming language, and in particular the Ada 2005 Object-

Oriented Programming and separate compilation enhancements (e.g.,
limited with , interfaces) that facilitate interfacing between Ada and Java.

• The GNAT User Guide
• The Java programming language

It will also be useful if you have a basic knowledge of the following:
• JNI (Java Native Interface), for example as described in The Java Native

Interface Programmer’s Guide and Specification, S. Liang, Addison-Wesley;
1999.

1

GNAT Ada-Java Interfacing Suite User’s Guide

2

Chapter 1: Getting Started with GNAT-AJIS

1 Getting Started with GNAT-AJIS

This chapter summarizes GNAT-AJIS’s basic capabilities and illustrates how
to use the GNAT-AJIS tools for some simple applications.

1.1 Introduction
GNAT-AJIS (GNAT Ada-Java Interfacing Suite) is a collection of GNAT add-on
tools for developing mixed-language Ada / Java applications where the Java
components run on a JVM and the Ada components are compiled natively.
Through GNAT-AJIS you can realize the following scenarios:
1. In a Java application, invoke subprograms from natively-compiled Ada

packages (i.e., either interface with an existing Ada API, or implement
Java native methods in Ada);

2. In a natively compiled Ada program, access methods and fields from Java
classes or objects.

GNAT-AJIS addresses these scenarios through an Ada binding to the JNI ser-
vices and “binding generator” tools that automate the generation of the neces-
sary “glue code”:

ada2java Takes an Ada package specification as input and produces one or
more Java classes, with native methods corresponding to the Ada
subprograms. This allows you to call Ada from Java.

javastub Takes a Java classfile and produces an Ada package spec for the
native methods found in these files. This allows you to implement
Java native methods in Ada.

jvm2ada When given the ‘-jni ’ option, takes a Java classfile and produces cor-
responding Ada specs that can be used to invoke the Java methods.
This allows you to call Java from Ada.

An alternative technique for combining Ada and Java is to compile Ada directly
to JVM bytecodes. This functionality is provided by the JGNAT tool, which
allows direct (i.e., not JNI-related) communication between Ada and Java based
on the standard Ada interfacing mechanisms. JGNAT handles a subset of Ada
that is compatible with the semantics of the Java Virtual Machine (for example,
representation clauses are not supported). It is a separate tool, not part of the
GNAT Ada-Java Interfacing Suite, and is fully described in the JGNAT User’s
Guide.

3

GNAT Ada-Java Interfacing Suite User’s Guide

1.2 GNAT-AJIS Installation Structure
Installing the GNAT-AJIS tools results in the following directory structure:1

$GNATAJIS INSTALL DIR/

bin/

ada2java (Solaris, Linux) or ada2java.exe (Windows) – executable
include/

ajis/

Various ‘.ads’ and ‘.adb’ files
gnatjni/

Various ‘.ads’ and ‘.adb’ files
lib/

libajis.so (Solaris, Linux) or ajis.dll (Windows)
libgnatjni.so (Solaris, Linux) or gnatjni.dll (Windows)
ajis.jar

ajis/

Various ‘.ali’ files
gnat/

Various files
gnatjni/

Various ‘.ali’ files

1.3 GNAT-AJIS / GNAT Compatibility
ada2java is based on ASIS and require a compatible version of the GNAT
compiler. To check the status of your installation, run ada2java with the ‘-v ’
switch; this will indicate the version of the GNAT compiler that was used to
build the GNAT-AJIS suite. Your GNAT-AJIS installation is compatible with
that GNAT version:
• Running ada2java requires using that specific GNAT version;
• On the other hand, the generated Ada files may be compiled with that

version or any later one.
The gnatjni and ajis libraries have been prebuilt for a specific version of
GNAT. If you need to compile them for some other version of GNAT, you can
rebuild the libraries manually:

gprbuild -P ajis.gpr -XExternal_Build=false -XObject_Dir=<some-dir>

where <some-dir> is a local directory where the temporary objects will be placed.

1.4 A Simple Example: Calling Ada from Java
This section illustrates how to invoke an Ada subprogram (compiled natively)
from Java running on a JVM. In summary, the steps are as follows:

1 For simplicity, Unix-style notation is used throughout this manual in depicting directories and
other host system conventions. For Windows, please make the relevant transformations (e.g.
‘\’ for ‘/’ in path names.

4

Chapter 1: Getting Started with GNAT-AJIS

• Make sure that the relevant environment variables are properly defined.
• Write a package specification for the subprogram(s) to be called from Java,

and a corresponding package body.
• Invoke the GNAT-AJIS tool ada2java on the Ada package spec, to produce

the corresponding Java classes (source files) and the necessary JNI “glue”
code (additional Ada source files). Providing the ‘-L libname’ switch will
cause a project file to be generated, which will help to automate some of the
processing.

• Invoke the Java compiler javac on the Java source files;
• Invoke gprbuild on the project file generated by ada2java ; this will compile

the Ada files into a shared library (Solaris, Linux) or dll (Windows);
• Invoke the Java interpreter to run a Java main class that invokes methods

from the Java classes generated by ada2java .

These steps will now be described in detail.

1.4.1 Environment Setup
Since you will be using both the Ada and Java toolsets, you need to ensure
that several environment variables are set. You can automate this step by
defining these variables in a shell script / batch file. For convenience you will
also find it useful to define an environment variable that “points to” the root
directory for the GNAT-AJIS tool installation. The description below assumes
that GNATAJIS_INSTALL_DIR has this role.

PATH Must contain the directories for the GNAT tools and for the GNAT-
AJIS tools. The latter will be in the $GNATAJIS_INSTALL_DIR/bin
directory. On Windows, it needs to contain the directory where the
shared libraries are generated, typically ‘./lib ’ although you can
override this.

LD_LIBRARY_PATH
On Solaris and Linux, must contain the directories where your na-
tive libraries will reside (generally the ‘./lib ’ subdirectory). This
variable is not needed on Windows.

CLASSPATH
Must contain $GNATAJIS_INSTALL_DIR/lib/ajis.jar , which is the
parent directory of the ‘com.adacore.ajis ’ Java package.

ADA_PROJECT_PATH
Must contain ‘$GNATAJIS_INSTALL_DIR/lib/gnat ’, the directory
that holds the GNAT project files needed for building applications
with GNAT-AJIS.

5

GNAT Ada-Java Interfacing Suite User’s Guide

1.4.2 An Ada Package
Assume that you would like to invoke an Ada procedure that displays the text
Hello from Ada , followed by an integer value passed to Ada from Java. De-
clare a procedure Hello in a package spec Hello_Pkg (file ‘hello_pkg.ads ’) and
implement the body (file ‘hello_pkg.adb ’):

package Hello_Pkg is
procedure Hello (Item : in Integer);

end Hello_Pkg;

with Ada.Text_IO; use Ada.Text_IO;

package body Hello_Pkg is
procedure Hello (Item : in Integer) is
begin

Put_Line("Hello from Ada: " & Integer’Image(Item));

end Hello;

end Hello_Pkg;

1.4.3 Invoking ada2java

Change to the directory containing the Ada source files, and invoke the com-
mand

ada2java hello_pkg.ads -L hello_proj

This will generate a number of files and directories, including:
Hello_Pkg/

Hello_Pkg_Package.java

Ada2Java/

Library.java

hello_proj.gpr

Specs and bodies for the JNI_Binding package hierarchy

These have the following significance:

Directory ‘Hello_Pkg ’
In the absence of an option that specifies the output directory for
the generated Java file, ada2java creates a new directory with the
same name as the Ada input unit and places the Java file in this
directory.

File ‘Hello_Pkg_Package.java ’
ada2java generates a Java source file with native method(s) cor-
responding to the visible subprogram(s) in the Ada package. (In
general ada2java may generate several Java source files, based on
the contents of the Ada package spec. In this example only one Java
file is produced.) The name of this file is the same as the Ada unit,

6

Chapter 1: Getting Started with GNAT-AJIS

with _Package appended (since the input file is a package, rather
than a procedure or function). The casing of the file name is the
same as that specified on the Ada unit declaration.
Ada parameters are mapped to Java types; here Ada’s Integer cor-
responds to the Java type int .
In skeletal form, here is the Java class that is generated:

package Hello_Pkg;

public final class Hello_Pkg_Package {

static public void Hello (int Item){...}

...

}

Directory ‘Ada2Java ’ and file ‘Library.java ’
ada2java generates the boilerplate file ‘Library.java ’ to automate
the library load step.

File ‘hello_proj.gpr ’
This is a GNAT project file that automates building the application
and loading the dynamic library.

Specs and bodies for the JNI_Binding package hierarchy
These files provide various “boilerplate” packages as well as the
package containing the “glue code” procedure whose signature com-
plies with the required JNI protocol and which invokes the Hello
procedure supplied in the original Hello_Pkg package.

1.4.4 Compiling the Java class
Invoke the Java compiler on the generated Java class:

$ javac Hello_Pkg/Hello_Pkg_Package.java

This will generate the classfile ‘Hello_Pkg_Package.class ’ in the ‘Hello_Pkg ’
directory.

1.4.5 Building the Application
Run gprbuild , using the project file generated by ada2java at an earlier step:

$ gprbuild -p -P hello_proj.gpr

This will generate a dynamic library – ‘libhello_proj.so ’ (Solaris, Linux) or
‘hello_proj.dll ’ – in the subdirectory ‘./lib ’ of the current directory, and
will produce the necessary object files in the ‘./obj ’ subdirectory. The two
subdirectories will be created if they do not already exist.

The dynamic library will be loaded automatically at run-time, by one of the
generated Java classes.

7

GNAT Ada-Java Interfacing Suite User’s Guide

1.4.6 Running the Program
Write a main Java class, for example a file ‘Hello.java ’:

import Hello_Pkg.Hello_Pkg_Package;

public class Hello{

public static void main(String[] args){

Hello_Pkg_Package.Hello(100);

}

}

Compile this class:
$ javac Hello.java

Run the Java program:
$ java Hello

This will produce the following output:
Hello from Ada: 100

8

Chapter 2: Using ada2java to Generate Java Classes

2 Using ada2java to Generate Java Classes

The ada2java tool takes one or more Ada package specs and produces as output
a Java “binding” to these packages, implemented through JNI. The binding
consists of a set of Java classes, with methods that access the Ada package’s
visible entities.

More specifically, ada2java generates two sets of source files as output:
• The Java classes that make up the binding, and
• The necessary Ada “glue code” that hides the details of how JNI is used for

interfacing between Ada and Java.

You will need to compile the Java files to bytecodes for execution on a JVM, and
you will need to compile the Ada files to native code in a dynamic library.

This chapter explains how to use the ada2java tool and describes the map-
ping from package spec contents to Java classes.

2.1 Using the Tool
The ada2java tool is invoked with at least one input file, and any number of
switches, in any order:

$ ada2java {switch | input-file} input-file {switch | input-file}

Each input-file must be the name of a source file for an Ada package spec
(including the extension).

The following switch values are allowed:

‘-h ’ Display help

‘-c JavaClassOutputDirectory’
The root directory used as the destination for the output classes.
The directory will be created if it does not already exist. In the
absence of this switch, the current directory is used. See below for
the relationship with the ‘-b ’ switch.

‘-b BaseJavaBindingPackage’
The base package for the generated Java classes; this will be relative
to the directory specified in the ‘-c ’ switch, or relative to the current
directory if no ‘-c ’ switch was supplied.

‘-o AdaGlueOutputDirectory’
The destination directory for the “glue” packages (‘ads ’ and ‘adb ’
files) generated by ada2java . The current directory will be used if
this switch is not supplied. The generated packages will need to be
compiled into a dynamic library.

9

GNAT Ada-Java Interfacing Suite User’s Guide

‘-P ProjectFile’
The project file that applies to the processing of the input-files sub-
mitted to ada2java . This can specify compiler switches, source direc-
tories, etc. ProjectFile must be a “flat” project (sources from “with”ed
projects are not yet supported).

‘-L LibraryName’
A mechanism for automating the loading of the native Ada dynamic
library in Java. This switch causes the generation of a project file
‘LibraryName.gpr ’ in the directory specified by the ‘-o ’ switch (or in
the current directory if the ‘-o ’ switch was not supplied). The result-
ing project file can be submitted to gprbuild to build the dynamic
library:

$ gprbuild -p -P LibraryName.gpr

which will generate a ‘lib/ ’ subdirectory that contains the file
‘lib LibraryName.so ’ (Solaris, Linux) or ‘LibraryName.dll ’ (Win-
dows). This library will be loaded automatically whenever one of the
Java classes produced by ada2java is loaded; there is no need for
the user to explicitly include an invocation of System.loadLibrary .

‘-M MainName’
A mechanism for automating the creation of an Ada main subpro-
gram, embedding both the native code and a JVM. See Section 2.2.3
[Compiling as an Ada Main Subprogram], page 12 for more details.
Implies -link-method=register_natives .

‘--main-class= java main class’
Changes the name of the java main class to use, in case the ‘-M’
switch is used. See Section 2.2.3 [Compiling as an Ada Main Sub-
program], page 12 for more details.

‘--link-method=(export| register natives) ’
The Java virtual machine has two ways of discovering the functions
declared in the native environment. Either it checks the correspon-
dence between the exported symbol and the Java native declaration
name (export mode), or the JNI code registers manually the symbols
using the Register_Native JNI function (register natives mode).
Note that if the code is not in a shared library but compiled with a
main native subprogram, then only register natives mode will work.

‘--bound-package-root= root package name’
Set the name of the root glue Ada packages (default is JNI Binding).

‘--bound-package-suffix= package suffix’
Set the suffix of the glue Ada packages (default is JNI).

10

Chapter 2: Using ada2java to Generate Java Classes

‘--no-monitor[-finalize] ’
‘--monitor[-finalize]-(check|protect) ’

Sets the default monitor for subprograms. See Section 4.3 [Thread
Safety], page 35.

‘--[no-]attach-(parameter|access|controlling|ada2005) ’
Sets the default attachment policy. See Section 4.7 [Managing At-
tachment to Java Proxies], page 45

‘--[no-]assume-escaped ’
Controls whether checks for object ownership are enabled. See Sec-
tion 4.2.6 [Restrictions on Proxy-Owned Objects passed to Subpro-
grams], page 32

‘--[no-]java-enum ’
Controls whether java enumerations should be used to bind ada
enumerations, or if static integers should be used instead (java enu-
meration is default).

Example:
$ ada2java -c mydir pack1.ads -b foo.bar

This results in the placement of the Java binding classes in the relative directory
‘mydir/foo/bar/ ’.

Note that the actual directory containing the generated Java classes will
need to be on the CLASSPATHenvironment variable in order to successfully run
a Java application that uses the binding.

2.2 Compiling and Running the Generated Code

2.2.1 Issues with the Ada Generated Code
Two sets of Ada units need to be compiled – the original packages and the
generated ”glue” code. The Ada glue depends on the ajis project installed in
the ‘lib/gnat ’ directory of the GNAT-AJIS installation.

It is highly recommended that you use the project generation switches ‘-L ’
(for a shared library) or ‘-M’ (for an Ada main subprogram). However, even
if these switches handle most cases, you may need to write your own build
procedures to address more advanced usage. In such a situation please note
that some compiler options may have an impact on the ajis library and thus
need to be taken into consideration:

‘-O2 -O3 ’ If you compile with a high optimization level, you should deactivate
strict aliasing using the compiler switch ‘-fno-strict-aliasing ’.

11

GNAT Ada-Java Interfacing Suite User’s Guide

‘-fstack-check ’
The stack checking mechanism is based on signals that are deacti-
vated by the GNAT AJIS library, so this switch will have no effect
and should not be used.

‘-fPIC ’ On Linux / Solaris, all the code has to be relocatable, which is speci-
fied through the ‘-fPIC ’ switch. If you are creating a shared library
that integrates components compiled externally, you have to ensure
that they have been compiled using the ‘-fPIC ’ switch.

2.2.2 Compiling as an Ada Shared Library
The most common architecture of an Ada / Java program, and a Java / Native
program in general, is to compile the native code into a shared library, and then
load that shared library at run time. In this case, the main entry point is a Java
main method, written by the developer.

In order to implement this scheme, you will need to create a SAL (Stand-
Alone Library) project containing the sources of the input packages plus the
“glue”, and use it to compile the library.

A simple standalone library project is generated if you use the ‘-L ’ switch.
The generated project can then be compiled with gprbuild, for example:

$ ada2java my_package.ads -o ada -c java -P my_project.gpr -b base -L my_lib

$ gprbuild -p -P ada/my_lib.gpr

Note that the native library will then be loaded automatically by the generated
Java glue code.

2.2.3 Compiling as an Ada Main Subprogram
If compiling the native code into a shared library is not practical, an alternative
is to create an Ada main subprogram embedding a Java Virtual Machine.

ada2java provides an easy way to generate a project and an Ada main sub-
program, through the ‘-M’ switch. This switch takes the name of the main as
parameter and will generate an Ada main that will automatically create a Java
virtual machine, and then call a Java method defined as follows:

package <base_package>;

public class <main_name> {

public static void main (String [] args) {

}

}

This class (and thus the method implementation) has to be provided by the
developer. If it is not present, the main subprogram will fail with an error at
run time.

12

Chapter 2: Using ada2java to Generate Java Classes

The generated main will look into the CLASSPATH environment variable
to find the Java classes when initializing the Java virtual machine. So for
example, if that you provide the following class:

package java_code;

import java_code.Test.Test_Package;

public class Main {

public static void main () {

Test_Package.Call_Something ();

}

}

using the following Ada API:
package Test is

procedure Call_Something;

end Test;

with the appropriate ‘test.gpr ’ project referencing the Test code, you will be
able to compile and run the code as follows:

$ ada2java test.ads -P test -b java_code -o ada -c java -M Main

$ gnatmake -P ada/main.gpr

$ CLASSPATH=‘pwd‘:‘pwd‘/java:$CLASSPATH

$ export CLASSPATH

$ javac java_code/Main.java

$ ada/obj/main

You can explicitly specify the name of the Java main class to use, through the
‘--main-class ’ switch, e.g.:

$ ada2java test.ads -P test -b java_code -o ada -c java \

> -M Main --main-class=some.main.My_Main

In this case, the Ada main will look for a main subprogram in some.main.My_
Main , instead of java_code.Main .

Note that you may need to define the LPATH, LD_LIBRARY_PATH or PATH
environment variables so that the code can be compiled against ‘jvm.lib ’ or
‘libjvm.a ’, and then run with ‘jvm.dll ’ or ‘libjvm.so ’.

2.2.4 Compiling the Java Generated Classes
The Java application needs to load the library before any of the Ada sub-
programs are invoked. If you did not supply the ‘-L ’ switch to ada2java ,
then you will need to do this explicitly; conventional style is to invoke
System.loadLibrary (" library-name") in a static initializer in the main Java
class. This step is automated if you use the ‘-L ’ switch, as described above.

Before running the Java code, you need to ensure that the CLASSPATHenvi-
ronment variable contains both the directory of the generated Java code, and

13

GNAT Ada-Java Interfacing Suite User’s Guide

the JAR for the GNAT-AJIS-related predefined classes. The latter archive ex-
ists as $GNATAJIS_INSTALL_DIR/lib/ajis.jar where GNATAJIS_INSTALL_DIR
is the root directory for the GNAT-AJIS installation.

2.3 Pragma Annotate and ada2java

Pragma Annotate (see GNAT Reference Manual) has several uses in conjunction
with the GNAT-AJIS tools, each with the form:

pragma Annotate (AJIS, AJIS annotation identifier {, argument});

GNAT-AJIS annotation names are defined in the package AJIS.Annotations ,
which is a part of the ajis.gpr project installed with GNAT-AJIS. You need to
have visibility on this package using a with and possibly a use clause before
being able to use these pragmas.

The following GNAT-AJIS annotation pragmas are supported:
• Annotation_Renaming – Section 4.1 [Dealing with Name Clashes], page 27
• Assume_Escaped – Section 4.2.6 [Restrictions on Proxy-Owned Objects

passed to Subprograms], page 32
• Attached – Section 4.7 [Managing Attachment to Java Proxies], page 45
• Monitor – Section 4.3 [Thread Safety], page 35
• Rename– Section 4.1 [Dealing with Name Clashes], page 27

14

Chapter 3: Mapping Ada to Java

3 Mapping Ada to Java
To allow an Ada package to be used from Java, ada2java generates one or more
Java classes (source files that will need to be compiled to bytecodes by a Java
compiler) based on the content of the visible part of the Ada package spec. This
section explains and illustrates the mapping for each of the various kinds of
entities declared in a package that can be used from Java.
In brief:
• Although there are some exceptions to this rule, in general a type and cer-

tain of its associated subprograms declared in an Ada package are mapped
to a Java class with methods corresponding to the Ada subprograms. Such
entities are said to be attached to the resulting class.

• Other entities declared in the Ada package map to static members defined
in a “default class” generated by ada2java . In particular, variables and
constants in the Ada package map to private static fields in the default
class and are accessed through ”getter” (and “setter” for variables) methods.
Such entities are said to be unattached.

If the default class is generated, its name is that of the original Ada package
(with the same casing as the identifier in the package declaration) suffixed with
_Package .

In the examples, only the portions of the Java classes needed by users of the
classes are shown.

3.1 Types
Types used in the Ada package map to Java types in the generated class(es).
This section explains the correspondence. As a general rule, note that while
most forms of type declarations have a correspondence in Java, subtype decla-
rations are ignored, as there is no equivalent to subtypes in Java. However,
subtype constraints imposed on Ada entities, such as variables or formal pa-
rameters, must be respected when referenced from Java, and can result in
exceptions when constraints are violated.

3.1.1 Scalar Types
The following table shows how Ada scalar types are mapped to Java primitive
types:

Ada type Java type
Integer type <= 32 bits int
Integer type > 32 bits long
Boolean boolean

15

GNAT Ada-Java Interfacing Suite User’s Guide

Character char
Other enumeration type int
Fixed-point type double
Floating-point type double

Constraint checks generated in the Ada glue code detect errors that may result
from the range mismatches between Ada and Java. For example, since a 16-bit
Ada integer will be mapped to 32-bit int in Java, the Java code might attempt
to pass an out-of-range value to Ada. This will raise a Constraint_Error
exception in Ada, which will be propagated back to Java as an AdaException
exception.

For an enumeration type, a Java final class is created, with the same name
as the enumeration type. This class defines the possible values for the enumer-
ation.

Example:
package Pckg is

type Enum is (A, B, C);

end Pckg;

will give:
package Pckg;

public final class Enum {

public static final int A = 0;

public static final int B = 1;

public static final int C = 2;

}

Representation clauses for enumeration types are not currently supported.
A discussion of subprogram formal parameters of scalar types may be found

in Section 3.3.2 [Subprogram parameters], page 22.

3.1.2 Arrays
Mapping Ada arrays to Java arrays would be very expensive, since it would
imply a copy of the whole array each time a parameter has to be passed. Thus
for efficiency an Ada array type is mapped to a dedicated “proxy” class with
methods that serve as accessors to attributes and components. For example:

package Ex1 is
type T1 is array(Integer range <>) of Float;

end Ex1;

will yield the following class:
public final class T1 extends com.adacore.ajis.internal.ada.AdaProxy {

...

public T1 (int First_1, int Last_1){...}

final public double Get_Element_At (int Index_1){...}

16

Chapter 3: Mapping Ada to Java

final public void Set_Element_At (int Index_1, double Value){...}

final public int First (){...}

final public int Last (){...}

final public int Length (){...}

}

A subprogram that takes a parameter of the Ada array type is mapped to a
method taking a parameter of the corresponding Java “proxy” class; note that
this method is located in the default class, and not in the proxy class.

3.1.3 Strings
Directly passing String data between Ada and Java would require expensive
copying, and thus an alternative approach is used. The Ada type String is
mapped to the Java class AdaString , which encapsulates the accesses.

More specifically, an Ada parameter of type String of any mode, and an
Ada access String parameter, are both mapped to a Java parameter of type
AdaString .

For efficiency, an AdaString object caches both its Ada and Java string values
after they have been computed. As an example, if the Ada spec is:

package Pckg is
procedure P (V : String);

end Pckg;

then the generated Java will be:
public final class Pckg_Package {

public static void P (V : AdaString) {...}

}

If we now write:
AdaString str = new AdaString ("A string from Java");

Pckg_Package.P (str);

Pckg_Package.P (str);

Only the first call will require the expensive string translation from Java to
Ada. The second invocation will directly use the cached value.

Please note that Java strings are UTF16-encoded, whereas the corresponding
Ada strings will be UTF8-encoded. This may have significant impact when
computing character offset on Java strings.

3.1.4 Simple Record Types
Simple (that is, not tagged) record types are mapped to Java final classes.
Components are accessed through a set of generated accessors (“getter” / “setter”

17

GNAT Ada-Java Interfacing Suite User’s Guide

methods). As a current limitation, ada2java does not yet support accessing
discriminant components.
Example:

package Pckg is
type R is

record
F1 : Integer;

F2 : Float;

end record;
end Pckg;

will give:
package Pckg;

public final class R {

public R () {...}

public final int F1 () {...}

public final void F1 (int Value) {...}

public final double F2 () {...}

public final void F2 (double Value) {.../}

}

A component that has an access-to-record type is treated as though it were of
the record type itself. For example:

package Pckg is
type R is

record
F1 : Integer;

F2 : Float;

end record;
type S is

record
G1 : R;

G2 : access R;

end record;
end Pckg;

will result in both a class R as above, and the following class S:
package Pckg;

public final class S {

public S () {...}

public R G1 () {...}

public void G1 (R Value) {...}

public R G2 () {...}

public void G2 (R Value) {...}

}

18

Chapter 3: Mapping Ada to Java

Only one level of indirection is implemented; ada2java does not support access
to access-to-record.

A private (untagged) type is treated like a record type, except that it does
not have any component-accessing methods. (A later release of ada2java will
generate methods for accessing discriminants if the type has any.)

3.1.5 Tagged Types
A tagged type is mapped to a Java class of the same name. If the Ada type is
abstract, then the Java type will be abstract as well.

3.1.5.1 General principles
A primitive (i.e., dispatching) subprogram of a tagged type is mapped to a
corresponding Java instance method. A current restriction is that the first
parameter of the Ada subprogram must be a controlling parameter; otherwise
the subprogram is mapped to a method in the default class. (Thus a function
that delivers a value of the tagged type, but has no controlling parameter, is
mapped to a method in the default class, and not to a method in the class
corresponding to the Ada type.) The first Ada parameter is mapped to the Java
method’s implicit this parameter.

A subprogram with a class-wide parameter is mapped to a method of the
tagged type’s Java class whose corresponding parameter has the Java class
type. However, as this is not properly a dispatching primitive of the Ada type,
it is declared as a final method.

As an example:
package Ex1 is

type T is tagged null record;
procedure P1 (X : in out T; F : Float);

procedure P2 (X : T’Class);

procedure Q1 (I : Integer; X : T);

procedure Q2 (I : Integer; X : T’Class);

function F return T;

end Ex1;

is mapped to:
public final class Ex1_Package {

...

static public void Q1 (int I, Ex1.T X){...}

static public void Q2 (int I, Ex1.T X){...}

static public T F (){...}

} // Ex1_Package

19

GNAT Ada-Java Interfacing Suite User’s Guide

public class T extends com.adacore.ajis.internal.ada.AdaProxy {

...

public void P1 (double F){...}

final public void P2 (){...}

} // T

3.1.5.2 Ada type hierarchies
Hierarchies of Ada types are preserved in the generated Java classes. Therefore,
the following structure:

type R is tagged record;

type R_Child is new R with null record;

will result in:
public class R {...}

public class R_Child extends R {...}

Consistency of Java types is guaranteed at run time. For example, the following
function:

package Pckg is
function F return R’Class;

end Pckg;

will result in:
public final class Pckg_Package {

public R F () {...}

}

However, if the actual type of the returned object is R_Child , then the value
returned by the Java function will be of the Java type corresponding to R_Child .

3.1.5.3 Java class hierarchies
It is possible to extend a Java class that was generated by ada2java from an
Ada tagged type.

For example:
package Rec_Pckg

type Rec is tagged null record;
procedure P (R : Rec);

end Rec_Pckg;

results in a Java class Rec with an instance method P:
class Rec extends com.adacore.ajis.internal.ada.AdaProxy {

...

public void P(){...}

}

You can then write:

20

Chapter 3: Mapping Ada to Java

class Rec_Child extends Rec {

public void P () {

System.out.println ("Hello from Java");

}

}

...

Rec ref = new Rec_Child();

ref.P(); // Displays "Hello from Java"

3.2 Global Variables and Constants
A package containing global variables (that is, variables declared in the package
spec’s visible part) is mapped to a default class containing “getter” and “setter”
methods for accessing and updating the variables. Global constants are treated
analogously, but they have only a “getter” method. Variables of limited types
also only have a “getter” method. Note that Ada named numbers, which are
really just values intended for use in static compile-time computations, are not
mapped to Java.

For example:
package Globals is

V : Integer;

C : constant Integer := 100;

N : constant := 3.14159;

end Globals;

will result in the default class:
public class Globals_Package {

static public int V (){...}

static public void V (int Value){...}

static public int C (){...}

}

3.3 Subprograms
Ada procedures and functions are mapped to Java methods. Nondispatching
subprograms are marked as final . Dispatching subprograms are discussed in
Section 3.1.5 [Tagged Types], page 19.

3.3.1 Method placement
In general, nondispatching subprograms are mapped to methods defined in the
default class. For example, if the input package spec is:

21

GNAT Ada-Java Interfacing Suite User’s Guide

package Pkg is
function F return Integer;

end Pkg;

then ada2java will generate the following default class:
public class Pkg_Package{

...

public static int F(){...}

}

However, there are cases where the subprogram can be attached to the class
of its first parameter. Attachment can be enabled / disabled depending on user
requirement. In this case, the explicit initial Ada parameter is mapped to the
implicit this parameter in Java. See Section 4.7 [Managing Attachment to
Java Proxies], page 45 for further details.

3.3.2 Subprogram parameters
The following rules and restrictions apply to the types of subprogram formal
parameters:
• Scalar types
− Access-to-scalar types are not supported.
− A scalar type with mode in is mapped to the corresponding Java type.

For example:
procedure P (V : Integer);

will result in:
public void P (int V) {...}

− A formal scalar with mode out or in out will be mapped to a cor-
responding “wrapper” class: BooleanRef , CharacterRef , DoubleRef ,
IntegerRef , and LongRef respectively encapsulating the primitive
type boolean , character , double , int and long).
Each of these classes defines setValue and getValue methods for ac-
cessing the encapsulated value.
The Java application needs to construct an object of the relevant wrap-
per class and pass it to the method that corresponds to the Ada sub-
program. After the return from the method, the Java application can
invoke the getValue method to retrieve the new value of the actual
parameter.

• Record and private types
− An Ada in , in out , or out formal parameter of a record or private type

(either tagged or untagged), is mapped to a Java formal parameter
of the class corresponding to the Ada type. Similarly, an Ada formal
parameter of an access-to-record-type or access-to-private-type (either

22

Chapter 3: Mapping Ada to Java

anonymous or named) is mapped to a Java formal parameter of the
class corresponding to the Ada type.
Example:

package Example is
type R is null record;
type Access_R is access all R;

procedure P(V1 : R;

V2 : out R;

V3 : in out R;

V4 : access R;

V5 : Access_R);

end Example;

The resulting Java class is:
public final class Example_Pckg {

...

public void P (R V1, R V2, R V3, R V4, R V5){...}

}

− An Ada out or in out parameter of an access-to-record (or access-to-
private) type is mapped to a nested class. For example:

package Example is

type R is null record;

type Access_R is access all R;

procedure P(V : out Access_R);

end Example;

will generate the default class and a class for R

public class Example_Package {

...

static public void P (R.Ref V){...}

}

public class R extends com.adacore.ajis.internal.ada.AdaProxy {

...

public static class Ref implements com.adacore.ajis.IProxyRef {

public void setValue (Object r) {...}

public Object getValue () {...}

}

}

The Java application needs to construct an object of the class R.Ref and
pass it to P. On return, the getValue method may be called to retrieve
the value in the out parameter returned by the Ada procedure.

− Further indirection, such as an access-to-access type for a formal pa-
rameter, is not supported.

23

GNAT Ada-Java Interfacing Suite User’s Guide

3.4 Subprogram Access Types
Accesses to subprograms - sometimes referred to as callbacks - can’t be directly
bound to Java. It is not possible to give a reference to a Java function in a type-
safe fashion. ada2java generates an abstract class with an abstract member
of the correct profile for each access type to be bound, the implementation of
its abstract primitive being the implementation of the subprogram access. For
example:

type P_Acc is access all procedure (V : Integer);

procedure Call_P_Acc (Proc : P_Acc);

pragma Annotate (AJIS, Assume_Escaped, False, Call_P_Acc, "Proc");

will be bound into:
abstract public class P_Acc {

abstract public P_Acc_Proc (int V);

}

void Call_P_Acc (P_Acc Proc);

and can be used in, for example, the following scenario:
Proc p = new Proc () {

public P_Acc_Proc (int V) {

System.out.println ("CALLED WITH " + V);

}

};

Pckg_Package.Call_P_Acc (p);

Note the use of the pragma Annotate on the Call_P_Acc method . The Java
implementations of bound subprogram access types are not actually accesses to
subprograms, but instances of Java objects. It’s not possible to store such an
object on the Ada side afterwards, since the complete information can’t be kept
in the access type. Therefore, the programmer must ensure that no escape of
the value is done, and take responsiblity for that by declaring the parameter as
being not escaped. Further details on escapement can be found in Section 4.2.6
[Restrictions on Proxy-Owned Objects passed to Subprograms], page 32.

3.5 Exceptions
Exceptions are bound into classes derived from com.adacore.ajis.NativeException .
It is then possible to throw or handle them directly in Java code.

Example:

24

Chapter 3: Mapping Ada to Java

package Example is
An_Exception : exception;
procedure Raise_An_Exception;

end Example;

package body Example is
procedure Raise_An_Exception is
begin

raise An_Exception;

end Raise_An_Exception;

end Example;

The resulting Java class is:
public final class An_Exception extends com.adacore.ajis.NativeException {

...

}

And can be used in e.g.:
try {

Example_Package.Raise_An_Exception ();

} catch (An_Exception e) {

// process the exception

}

3.6 Renamings
Renamings of objects and subprograms are supported by ada2java . Object re-
namings are mapped in the same way as global objects, by means of “setter”
and “getter” methods in the default class for the containing package. A subpro-
gram renaming is represented by a method with the name of the renaming that
invokes the renamed subprogram, declared in the appropriate class. In other
words, the same rules that apply to other subprograms apply to subprogram
renamings.

3.7 Generics
Generic packages and subprogram can’t be directly bound to Java. However,
packages and subprograms instances and bound like regular packages and
subprograms.

3.8 Predefined Environment
In order to access descendants of Ada or GNATfrom Java, you need to manually
invoke ada2java on the Ada source files from the GNAT installation directories,
to generate the corresponding Java binding classes. This step will be automated
in a future release of GNAT-AJIS.

25

GNAT Ada-Java Interfacing Suite User’s Guide

3.9 Current Limitations
The following features are not supported:
• Discriminants. Discriminants are not accessible from the Java class gener-

ated for a discriminated type.
• Anonymous arrays. Objects with an anonymous array type are not sup-

ported, but array type declarations which declare a constrained first sub-
type are supported.

• Interfaces. No mapping is currently provided from Ada interface types to
Java interfaces.

• Tasking features. Tasks and protected objects/types are ignored.

26

Chapter 4: Advanced ada2java Topics

4 Advanced ada2java Topics

This chapter discusses a number of issues that ada2java users should be aware
of.

4.1 Dealing with Name Clashes
If Ada subprograms from the same package spec produce the same Java profile,
the binding generator will detect the problem and generate only the first entity.
Other entities of similar name will be ignored with a warning. To prevent this,
you can use the Rename pragma to define the Java name corresponding to an
Ada entity:

pragma Annotate (AJIS, Rename, identifier, static string expression);

The identifier argument denotes the Ada entity. The static string expression
is the name that will be used for the corresponding Java entity generated by
ada2java .

Example:
package Example is

type I1 is new Integer;

type I2 is new Integer;

function F return I1;

pragma Annotate (AJIS, Rename, F, "F_I1");

function F return I2;

pragma Annotate (AJIS, Rename, F, "F_I2");

end Example;

This will result in two Java functions:
int F_I1 ();

int F_I2 ();

Adding a pragma to an Ada package specification is not always practical, and
indeed may be impossible if the specification is from an external library. With
GNAT-AJIS, you can provide the pragma in a separate Ada file, applying it to
an Ada entity that is itself a renaming declaration.

This entity must be marked by another Annotate pragma:
pragma Annotate (AJIS, Annotation_Renaming, identifier).

where identifier denotes an entity defined by an Ada renaming declaration. The
Annotation_Renaming pragma applies to all AJIS pragmas that are specified
for identifier.

27

GNAT Ada-Java Interfacing Suite User’s Guide

package Example is
type I1 is new Integer;

type I2 is new Integer;

function F return I1;

function F return I2;

end Example;

with Example;

package Renamings is
function F return Example.I1 renames Example.F;

pragma Annotate (AJIS, Annotation_Renaming, F);

pragma Annotate (AJIS, Rename, F, "F_I1");

function F return Example.I2 renames Example.F;

pragma Annotate (AJIS, Annotation_Renaming, F);

pragma Annotate (AJIS, Rename, F, "F_I2");

end Renamings;

Entities annotated with pragma Annotate(AJIS, Annotation_Renaming) will
not be mapped to Java entities; they are assumed to be used only to define
annotations.

4.2 Memory Model
An object on the Ada side – a so-called native object – is accessed in Java through
a proxy object: an instance of a class (the proxy class) generated from the Ada
object’s type. The proxy object contains a reference to the native object. Invoking
a member function on the proxy object results in a call of a native subprogram
on the native object. The native object may be either allocated or declared.

This section explains the implications of this model on the usage of the
generated binding.

4.2.1 Requirements for Non-null Parameter Values
If an Ada subprogram’s formal parameter is not an access parameter (i.e., it has
in , in out or out mode), then invoking the corresponding Java method requires
a non-null reference to a proxy object. For example:

package P is
type T is null record;

procedure Proc (V : out T);

end P;

results in the following Java classes:
public class T {

...

}

28

Chapter 4: Advanced ada2java Topics

public final class P_Package {

public static Proc (T V) {

...

}

...

}

You need to ensure that the V parameter passed to Proc is not null . Hence, the
following will throw an exception, since v is implicitly initialized to null :

T v;

P_Package.Proc (v);

A simple way to provide a non-null reference is to initialize it to an allocated
object:

T v = new T ();

P_Package.Proc (v);

4.2.2 Allocating Ada Objects from Java
If A is an Ada type that is mapped by ada2java to a Java class J , then the
execution of a Java constructor J() will create two objects:
• A Java object (the “proxy” object) of class J , allocated on the Java heap and

subject to Garbage Collection by the JVM, and
• An Ada object of type A, allocated on the Ada heap, referenced from the

proxy object.

4.2.3 Automatic Creation of Native Objects
Under certain circumstances, the generated Java code may construct extra
native objects on the Ada heap. To help explain this, here is an example where
such allocation is not needed, namely, a function returning an access value:

package P is

type T is record ... end record;

type T_Acc is access all T;

function Create_T_Acc return T_Acc;

end P;

The generated code will look like:
public class T { ...}

public final class P_Package {

final public T Create_T_Acc () { ...}

...

}

29

GNAT Ada-Java Interfacing Suite User’s Guide

On the Java side, the method Create_T_Acc returns a proxy object that contains
the value of the pointer returned by the call of the Ada function. So the user
can write:

T v = P_Package.Create_T_Acc ();

and then access the data of v . Note that all the standard precautions that apply
in using an Ada pointer have to be taken in this case as well. In particular, after
the object has been freed on the Ada side, there should be no further references
to it from Java. The Ada programmer needs to document how the returned
value should or should not be used, and the Java programmer needs to adhere
to these guidelines.

However, a function returning a record rather than an access value raises
additional issues:

package P is
type T is record ... end record;

function Create_T return T;

end P;

results in a default class similar to the one in the previous example:
public final class P_Package {

final public T Create_T () { ... }

...

}

The Java programmer can write:
T v = P_Package.Create_T ();

But in this case, the value returned by the function is not a pointer. A new Ada
native object is automatically allocated on the heap, initialized to a copy of the
value returned by the Ada function, and is referenced through the proxy object
constructed by the Java method Create_T . This is similar to the Ada situation
where calling Create_T_Acc would not involve a copy of a T object, whereas
Create_T would.

Because of implementation constraints there may be more than one copy
involved in the call of Create_T (but only one native object will be created
on the heap). This will be discussed further in Section 4.5 [Clone and Copy
Semantics], page 39.

4.2.4 Native Ownership
As illustrated above, native objects may be created automatically by Java meth-
ods corresponding to Ada subprograms. This raises the issue of when/how such
objects are to be deallocated.

In general, the ada2java approach is based on the following principles:
• The environment (Java or Ada) that allocates an object is responsible for

its deallocation;

30

Chapter 4: Advanced ada2java Topics

• In Java, all deallocation is performed implicitly, by the Garbage Collector;
• In Ada, the programmer is responsible for manually deallocating the ob-

jects;
• Dangling references should be prevented; i.e., the Ada object should not be

deallocated as long as there are still live references to the object.
A native object created from Java is said to be owned by its proxy object. It has
been created by the Java program, and it must be freed by the Java environment.

Such an object is tightly linked to its proxy – when the proxy object doesn’t ex-
ist (i.e. is garbage collected), the native object becomes inaccessible.1 The native
object deallocation will occur automatically, when the Java proxy is garbage col-
lected (more specifically through the implementation of the finalize method).

A native object not owned by a proxy – for example, one that has been
obtained from the Ada API through an Ada pointer – will not be deleted auto-
matically.

The ownership state of a native object may be queried through the
getOwner method. This function returns a value from the enumeration
com.adacore.ajis.IProxy.Owner , either NATIVE or PROXY, specifying who is
responsible for managing the memory. For example after these assignments:

T v1 = new T ();

T v2 = P_Package.Create_T_Acc ();

T v3 = P_Package.Create_T ();

the following relationships hold:
v1.getOwner () PROXY
v2.getOwner () NATIVE
v3.getOwner () PROXY

Native objects referenced by v1 and v2 will be deallocated when the correspond-
ing Java proxy is garbage-collected.

You may change the owning attribute of a referenced native object, through
the setOwner method of proxy classes. This should be used very carefully, as it
may generate memory leaks or corruption. Doing the following:

T v1 = new T ();

v1.setOwner (Owner.NATIVE);

will deactivate the object deallocation on finalization. The Java programmer
becomes responsible for explicitly deallocating the native object.

Note that, while moving the owning from PROXY to NATIVE is a relatively
safe operation, raising the possibility of memory leaks but not object corruption,
moving in the opposite direction should be done with great care. A object
managed by the NATIVE side may be deallocated by the Ada application at any

1 As will be described below, cloning the proxy object has special semantics so that the native
object gets copied, not only its reference.

31

GNAT Ada-Java Interfacing Suite User’s Guide

moment, or be declared as the field of another object or even on the native stack
in situations such as callbacks. If it’s not clear where the object is coming from,
cloning it (resulting automatically into an object managed by the proxy) is often
the best solution.

As will be described below, only objects that are known to be managed though
pointers can have their ownership changed. An object obtained, for example,
from a global variable or field will need to retain its known ownership.

4.2.5 Object Allocators
The generated code keeps track of how native objects have been obtained, and
restricts their operations accordingly. Three possible allocators are recognized:

DYNAMIC Such objects are created either through bound constructors, accessed
from native access types, or through an automatic copy from the
bound code. The ownership of dynamic objects can be changed.

STATIC Such objects are accessed from global variables, fields, or callback
parameters that are not access types. The ownership of these objects
is always NATIVE and cannot be changed.

UNKNOWN In some cases, for example on copying values of tagged types,
it is not possible to determine whether the object has been al-
located statically or dynamically. In such cases you can access
the allocator through which an object is referenced using the
IProxy.getAllocator () function.

4.2.6 Restrictions on Proxy-Owned Objects Passed to
Subprograms

Passing a (reference to a) native object as an actual parameter to an Ada sub-
program whose corresponding formal parameter is either an access parameter
or of an access type could in some cases result in a dangling reference to the
native object, whereas in other situations it might be harmless. In order to
provide the desired safety while allowing the needed generality, ada2java ’s ap-
proach is similar to the way that the Ada standard supplies both the ’Access
and ’Unchecked_Access attributes for composing pointers to data objects.

In summary, when the Java side is responsible for pointer memory man-
agement (i.e. the object is owned or it is accessed through ’Access or
’Unrestricted_Access), then an exception will be thrown in Java on an at-
tempt to pass a reference to a native object as an actual parameter when the
formal is of a named or anonymous access type. However, this check can be sup-
pressed either locally (for a given formal parameter) or globally (for all calls).

Here is a summary of the troublesome scenario:

32

Chapter 4: Advanced ada2java Topics

1. A reference to a proxy object is passed as a parameter to a Java method, and
the reference to the corresponding native object is then passed to a native
Ada subprogram whose formal is an access parameter or of an access type;

2. The Ada subprogram copies the parameter to a global variable and ulti-
mately returns;

3. The proxy object ultimately becomes inaccessible and is garbage collected
by the JVM;

4. The native object is deallocated as an effect of the proxy object’s finalization;
5. The deallocated object is still designated by the global variable.

To prevent this, an exception is thrown at step 1 above.
Here is an example:
-- Original Ada package
package P is

type T is
record

A, B : Integer;

end record;

type A_T is access all T;

G : A_T;

procedure Set_G (V : A_T);

end P;

package body P is
procedure Set_G (V : A_T) is
begin

G := V;

end Set_G;

end P;

// Java statements
T v = new T ();

P_Package.Set_G (v); // Throws an exception

If the invocation of Set_G did not throw an exception, Gwould become a dangling
pointer when the proxy object referenced by v is garbage collected.

However, if the invocation of Set_G did not cause an assignment of its formal
parameter V to a global variable, then passing v as an actual parameter would
be harmless. ada2java allows the Ada API to enable such uses, and thus to
deactivate the check:

pragma Annotate (AJIS, Assume_Escaped, Condition, Subprog, Formal Param)

where:
• Condition is either True or False

33

GNAT Ada-Java Interfacing Suite User’s Guide

• Subprog is the name of the Ada subprogram
• Formal Param is the affected formal parameter, expressed as a String

literal

When Condition is False , the Ada subprogram is responsible for ensuring that
the formal parameter is not copied to a global variable, or used to set a field
of a structure that will be used outside of the scope of the subprogram. When
Condition is True , an exception is thrown when a proxy object is passed as an
actual parameter to the Formal Param parameter of Subprog.

Here is an example:
package P is

type T is
record

A, B : Integer;

end record;

type A_T is access all T;

G : A_T;

procedure Safe_Set_G (V : A_T);

pragma Annotate (AJIS, Assume_Escaped, False, Safe_Set_G, "V");

end P;

package body P is
procedure Safe_Set_G (V : A_T) is
begin

G := new T’(V.all);
end Safe_Set_G;

end P;

// Java statements
T v = new T ();

P_Package.Safe_Set_G (v); // OK

The invocation Safe_Set_G (v) is safe since the Ada subprogram does not let
the formal parameter “escape”.

The “escaped” checks can be globally activated through the ada2java
switch ‘--assume-escaped ’, and globally deactivated through the switch
‘--no-assume-escaped ’. The default is ‘--assume-escaped ’. An explicit
pragma overrides the global configuration switch.

Note that canceling escape checks should be done with great care, as there
is no way to ensure that no escaping has occurred. In many situations, the
programmer’s intent is to create an object on the Java side and then store the
object on the native side. In such a case, canceling proxy ownership through
the IProxy.setOwner method will have the desired effect, for example:

34

Chapter 4: Advanced ada2java Topics

// Java statements
T v = new T ();

v.setOwner (Owner.NATIVE);

P_Package.Set_G (v); // OK

4.3 Thread Safety
By default, the generated Java code is thread-safe, with locking logic that pre-
vents multiple Java threads from accessing native methods at the same time. In
summary, a Java method in a proxy object acquires a lock (a binary semaphore)
before invoking the corresponding native method, and releases the lock when
the native method returns (either normally or abnormally). The semaphore is
global versus per Ada package; e.g. different Java threads are not allowed to
invoke native methods simultaneously even if the native methods correspond
to subprograms from different packages.

Even if the Java application does not explicitly create any threads, there
are still two threads – the main (user) thread and the garbage collector; thus
locking is needed in this case also.

The default locking behavior is not always appropriate, however. In partic-
ular, if the native code is using tasking, with mutual exclusion enforced on the
Ada side, then there is no need for locking in the Java code (and indeed such
locking could have undesirable consequences including deadlock).

User control over the generation of locking code is obtained through the
following pragma:

pragma Annotate (AJIS, Locking, Subprogram, LockControl);

where Subprogram is the subprogram name, and LockControl is one of Disable ,
Check and Protect .

Protect Default setting. The generated code automatically brackets each
invocation of the named native Subprogram within a lock ... unlock
region. If a thread t1 invokes Subprogram while some other thread
t2 holds the lock, then t1 will be queued until the lock is released.
Thus simultaneous calls of native methods are permitted but will
entail queuing.

Disable The generated code contains no locking around invocations of Sub-
program, and one thread may invoke Subprogram while some other
thread is executing a native method (even one whose LockControl
is Protect .

Check The generated code contains no locking around invocations of Sub-
program, and the application must ensure that any such invocation
is within a lock ... unlock region. An exception is thrown if a thread
invokes Subprogram without holding the lock.

35

GNAT Ada-Java Interfacing Suite User’s Guide

The following examples illustrate the multithreading behavior and the effects
of the LockControl argument to the pragma.

package P is

procedure P1 (I : Integer);

pragma Annotate (AJIS, Locking, P, Disable);

procedure P2 (I : Integer);

pragma Annotate (AJIS, Locking, P, Disable);

end P;

Concurrent invocations of P1 and P2 are allowed (i.e., locking code is not gener-
ated automatically).

Code protected by the lock can be provided by hand by the Java devel-
oper. The lock is created in the library class generated for the binding,
base package.Ada2Java.Library , under the identifier lock . Thus:

import base.P_Package;

import base.Ada2Java.Library;

public class Main {

public static void main (String [] args) {

Library.lock.lock ();

try {

P_Package.P1 (0);

P_Package.P2 (0);

} finally {

Library.lock.unlock ();

}

}

}

Following standard Java coding style, the lock / unlock logic should always ap-
pear in a try ... finally block, in order to release the lock even if an unexpected
exception is propagated.

In certain cases, locking is required but the logic is more complex than simply
protecting each native method invocation with a semaphore. For example, it
may be necessary to invoke a sequence of native methods as an atomic action.
This effect can be achieved through the Check setting for LockControl:

package P is
procedure P1 (I : Integer);

pragma Annotate (AJIS, Locking, P1, Check);

procedure P2 (I : Integer);

pragma Annotate (AJIS, Locking, P2, Check);

end P;

36

Chapter 4: Advanced ada2java Topics

The Java program has to acquire the library lock before attempting any native
call. Invoking P1 or P2 outside of a section protected by the lock will throw a
Java exception.

The locking behavior can be changed globally through the ada2java
‘--[no-]locking ’ switch. More specifically, here are the permitted values for
this switch:

--locking-protect
Default setting; globally sets LockControl as Protect for all subpro-
grams.

--locking-check
Globally sets LockControl as Check for all subprograms.

--no-locking
Globally disables locking (i.e., sets LockControl as Disable for all
subprograms).

Note that an AJIS Locking pragma takes precedence over the global switch.
The finalize method invoked during garbage collection does not correspond

to a subprogram from the Ada package that is input to ada2java , and it is not
affected by the ‘--[no-]locking ’ switch. Instead, the locking logic used for the
finalize call of Java proxies during garbage collection is determined by the
‘--[no-]locking-finalize ’ switch:

--locking-finalize-protect
Default setting; sets LockControl as Protect for finalize .

--locking-finalize-check
Sets LockControl as Check for finalize .

--no-locking-finalize
Disables locking (i.e., sets LockControl as Disable for finalize)

A typical usage of these two switches would be to set Check as the LockControl
for all subprograms, and Protect as the LockControl for finalize methods:

ada2java --locking-check --locking-finalize-protect p.ads

4.4 Proxies and Native Object Equality
Proxy classes are generated with an equals implementation that calls the cor-
responding Ada "=" operation. For example:

package P is
type T is

record
F : Integer;

end record;
end P;

37

GNAT Ada-Java Interfacing Suite User’s Guide

The proxy class can be used as follows:
T v1 = new T ();

T v2 = new T ();

v1.F (0); "setter" method for field F
v2.F (0); "setter" method for field F

and now the result of v1.equals (v2) is true . This corresponds to “shallow”
equality, in contrast with “==” which tests pointer identity.

A new proxy is created each time a native function returns a pointer. For
example:

package P is
type T is null record;
type A_T is access all T;

G : A_T := new T;

function Return_G return A_T;

end P;

package body P is
function Return_G return A_T is
begin

return G;

end Return_G;

end P;

AT p1 = P_Package.Return_G ();

AT p2 = P_Package.Return_G ();

Now p1 == p2 is false , since a new proxy is created by each function return,
but p1.equals (p2) is true ,

The association between a proxy and its native object is lost when the proxy
is passed to a native method. For example:

package P is
type T is null record;
type A_T is access all T;

function Return_This (This : A_T) return A_T;

end P;

package body P is
function Return_This (This : A_T) return A_T is
begin

return This;

end Return_G;

end P;

T v = new T ();

Now the result of (v == P_Package.Return_This (v)) is false

Java reference equality has special semantics in the case of cross-language
inheritance, due to the use of a shadow native object – see Section 4.6.3.3
[Shadow Object Equality], page 42 for more details.

38

Chapter 4: Advanced ada2java Topics

4.5 Clone and Copy Semantics
A proxy class generated from a non-limited Ada type includes a clone method.
The base class for all proxies, AdaProxy , implements the Cloneable interface,
and defines a public method clone . The clone method performs a “shallow
copy” of all the fields, except for the native object reference. The native object
reference in the cloned proxy is a pointer to a newly allocated Ada object. This
new native object is itself a shallow copy of the original native object.

Thus cloning a proxy does not result in the sharing of the native object by the
original proxy and the cloned proxy. The latter points to a new native object.
This behavior is needed to avoid a dangling reference (to the native object) when
the original proxy is garbage collected.

If the proxy class corresponds to a limited type, then the generated clone
method will throw an exception.

Additional semantics for clone and copy, in connection with cross-language
inheritance, are covered below (see Section 4.6.3.4 [Shadow Object Cloning],
page 43).

4.6 Cross-Language Inheritance
This section discusses a number of issues related to cross-language inheritance;
i.e., defining a Java class as an extension of a proxy class for an Ada tagged
type.

4.6.1 Inheriting from a Java Proxy
As explained in Section 3.1.5 [Tagged Types], page 19, ada2java maps an Ada
tagged type to a non-final Java proxy class. You can extend this class in Java.
For example:

package P is
type T is tagged null record;

procedure Prim (V : T);

end P;

results in the following Java class:
public class T {

public void Prim () {

...

}

...

}

which may be extended, with the instance method overridden:

39

GNAT Ada-Java Interfacing Suite User’s Guide

public class T_Child extends T {

public void Prim () {

...

}

}

An object of the subclass T_Child is also a proxy; constructing such an object
allocates a native object, referred to as a “shadow native object”. Its properties
will be described below (Section 4.6.3 [The Shadow Native Object], page 41).

The Java program can then invoke the Prim method, with standard Java
dispatching behavior. For example:

T v1 = new T ();

T v2 = new T_Child ();

v1.Prim (); // Will call the native Prim
v2.Prim (); // Will call the overridden Java Prim

4.6.2 Cross Language Dispatching from Ada
A method overridden in Java can be called in Ada using the usual Ada dispatch-
ing mechanism. For example:

package P is
type T is tagged null record;

procedure Prim (V : T);

procedure Call_Prim (V : T’Class);

end P;

package body P is

procedure Prim (V : T) is
begin

-- Native Prim implementation;
end Prim;

procedure Call_Prim (V : T’Class) is
begin

Prim (V); -- Dispatching call.
end Call_Prim;

end P;

The invocation of Prim in Call_Prim is dispatching, and the Prim for the type
of the actual parameter will be called. In Java, this procedure can be used in
conjunction with a cross-language extension of T, e.g.:

40

Chapter 4: Advanced ada2java Topics

class T_Child extends T {

public Prim () {

...

}

}

T v = new T_Child ();

P_Package.Call_Prim (v);

The Java program is invoking the native Ada Call_Prim procedure, which in
turn dispatches to the Java method Prim in T_Child .

4.6.3 The Shadow Native Object
This section describes in more detail the semantics of the shadow native object.

4.6.3.1 Basic Properties
As seen above, cross-language dispatching is supported; an Ada dispatching call
may result in the invocation of a Java method on a proxy object. This is possible
because of the shadow native object concept.

For any tagged type T declared in a package spec that is input to ada2java ,
a new type is automatically generated that extends T with a component that
references a proxy object. The Ada declaration is:

type Shadow_T is new T with
record

Link_To_Proxy : Java_Object;

end record;

If T_Child is a Java class that extends T, then constructing an instance of T_
Child will create a native Shadow_T object instead of a regular T object. This
type overrides every controlling primitive of T, and delegates the dispatching
to the Java side. If a method corresponding to an Ada primitive operation is
not overridden in Java, then the subprogram from the parent Ada type will be
automatically called.

The use of a shadow object introduces a tight relationship between a Java
proxy and its Ada native object. Basically, there is a roundtrip dependency
between the two, so that a Java proxy object is associated with a unique Ada
shadow native object and vice versa.

This has several non-trivial implications that are described in the sections
below.

41

GNAT Ada-Java Interfacing Suite User’s Guide

4.6.3.2 Memory Management
The reference from the shadow native object to the Java object is called a global
reference.2 There are two kinds of global references: regular (usually simply
referred to as global references) and weak. A regular global reference prevents
the object from being garbage collected, whereas a weak global reference does
not.

When a native object is owned by its proxy, the proxy is responsible for
releasing the native memory. In this case, the reference from the native object
to the proxy is a weak global reference: garbage collection will not be prevented,
and both the proxy and then the native object will be released upon collection.

However, when the native object is owned by the native side, then the native
object may continue to exist even if the proxy has become inaccessible from
Java. In such a case, a global reference is used, so that the garbage collector
is prevented from collecting the Java object. Such a global reference will be
automatically released when the Ada object is actually deallocated.

Forcing the deallocation of the native object through
IProxy.deallocateNativeObject will release the global reference as
well.

Switching the owner of the native object between NATIVE and PROXY will
switch the reference from a regular global reference to a weak one.

In order to avoid a potential memory leak, the link between the shadow
native object and the Java proxy has to be broken manually when the shadow
native object is no longer needed on the Ada side. This may be done in two
ways:

• Deallocating the native shadow object, from Ada.

• Invoking the unlink method on the proxy, from Java

4.6.3.3 Shadow Object Equality
Java reference equality (==) is not consistent with native pointer equality, but
Java object equality (equals) is. That is, if A and B are two native pointers
where A = B, then on the Java side A.equals(B) is true but a==b is false .

However, since the association between shadow object and proxy is one-to-
one, proxy equality is meaningful. For example:

2 An explanation of global references may be found in Liang’s The Java Native Interface Pro-
grammer’s Guide and Specification, Chapter 5.

42

Chapter 4: Advanced ada2java Topics

package P is
type T is tagged null record;
type T_Access is access all T’Class

procedure Identity (Item : T_Access) return T_Access;

-- Returns Item as its result
end P;

On return from Identity , the “glue code” between Java and Ada will check if the
returned value is a shadow native object and, if so, will return the corresponding
Java proxy instead of creating a new one. Hence the following fragment

public class T_Child extends T {

}

T v = new T_Child ();

will result in the expression P_Package.Return_This (v) == v delivering true .

4.6.3.4 Shadow Object Cloning
Cloning from Java will result in copying a native object. In the case of a shadow
native object, there will be a new shadow object as well, referencing the newly
created java proxy, thus preserving the one-to-one relationship between the
shadow native object and the proxy.

However, there are cases where copies are made from Ada as well:
package P is

type T is tagged null record;
type T_Access is access all T’Class

procedure Duplicate (Item : T_Access) return T_Access;

end P;

package body P is

procedure Duplicate (Item : T_Access) return T_Access is
begin

First_Copy : T’Class := Item.all;
Second_Copy : T_Access := new T’Class’(Item.all);

begin
return Second_Copy;

end Duplicate;

end P;

Calling Duplicate from Java will lead to two shadow object copies, one on
the stack (First_Copy) and one on the heap (Second_Copy.all). As explained
earlier, the link between the shadow native object and the proxy will be deleted
when the Ada object is deallocated, at the exit of Duplicate for the First_Copy
variable.

43

GNAT Ada-Java Interfacing Suite User’s Guide

The Second_Copy proxy created in the copy process will be returned by the
Java method corresponding to the Duplicate procedure.

Note that a proxy created by such a copy does not own its Ada native object.
Proxy cloning from Ada does not involve a clone invocation from the Java

extended object. If the Java code needs to perform a deep copy in the Java proxy,
the method void proxyCloned (IProxy initialObject) should be overridden
instead. The default clone implementation of the generated Java classes will
call this method as well.

Limitation: when proxyCloned is called from Ada, the link between
proxy and native object is not yet established. Thus proxyCloned is not al-
lowed to invoke any native methods. The Ada type may be derived from
Finalization.Controlled , and Adjust may be overridden, to work around
this limitation.

Note that multiple copies – and thus repeated proxy creation – may be
involved when a (non-access) shadow object is returned. For example:

package body P is

function Identity (Item : T_Access) return T’Class is
begin

return Item.all;
end Identity;

end P;

Due to internal machinery, three copies may be needed in the implementation of
the return from this function when called from Java. If it is necessary to ensure
that only one copy is performed, then the Ada function should be written as a
wrapper for an Ada access-returning function.

4.6.4 Controlled Types
A class that is generated from an Ada controlled type may be extended in Java,
with overriding versions of the Adjust , Finalize , and/or Initialize methods.

A current limitation is that Initialize cannot be called on a shadow object,
e.g.:

package P is

type T is new Controlled with null record;

procedure Initialize (This : in out T);

end P;

can be used in:

44

Chapter 4: Advanced ada2java Topics

class T_Child extends T {

void Initialize () {

}

}

T v = new T_Child ();

But the overridden Initialize will not be called by the constructor.
This limitation will be removed in a future release.

4.7 Managing Attachment to Java Proxies
By default, subprograms (except controlling primitives) are not attached – they
are placed in the default class Ada Package Name._Package . However, when
all of the following conditions are met, a subprogram is attachable to the class
corresponding to its first parameter:
• The first parameter of the subprogram has one of the following forms:
− A private type or a record type,
− An access type (of mode in) designating a private or record type, or
− An access parameter designating a private or record type.

• The type of this parameter – or of the designated type if an access parameter
– is declared in the same package spec as the subprogram.

A subprogram that meets these criteria can be mapped to a method defined in
the class corresponding to the first parameter’s type, and the value of this first
parameter will come from the hidden parameter this .

This attachment is activated by the annotation pragma Attached :
pragma Annotate (AJIS, Attached, Condition, Subprogram);

Example:
package Example is

type Rec is null record;
procedure Proc (V : Rec; I : Integer);

pragma Annotate (AJIS, Attached, True, Proc);

end Example;

will map to the class
public class Rec extends com.adacore.ajis.internal.ada.AdaProxy {

...

public void Proc (int I){...}

}

Attachment policies may be globally turned on / off using the following switches:

45

GNAT Ada-Java Interfacing Suite User’s Guide

--[no-]attach-parameter
Activates or deactivates “best-effort” attachment to the class corre-
sponding to the first parameter. When this is set, ada2java will try
to perform subprogram attachment whenever possible. Default is
--no-attach-parameter

--[no-]attach-access
Activates or deactivates attachment for access type. When acti-
vated, subprograms with an access type (named or anonymous) for
their first parameter will be attached. (Note, however, that such
attachment prevents passing a null value, since this is always the
implicit parameter.) Default is --no-attach-access .

--[no-]attach-controlling
Activates or deactivates attachment of controlling primitives.
This is required for cross language inheritance. Default is
--attach-controlling .

--[no-]attach-ada2005
Activates or deactivates attachment based on applicability of
Ada 2005 prefix notation. With the ‘--attach-ada2005 ’ switch,
ada2java will attempt to attach a subprogram (define it in the
class corresponding to the initial parameter) that would otherwise
be placed in the default package, if it can be invoked via Ada 2005
prefix notation. Default is --no-attach-ada2005 .

In the example below, attachment is requested for everything except noncon-
trolling initial access parameters:

ada2java --attach-parameter --no-attach-access p.ads

Pragma Attached takes precedence over the global switch.

4.8 Exceptions propagation
Exceptions raised from Ada are translated into instances of the relevant de-
scendant of class com.adacore.ajis.NativeException (see Section 3.5 [Excep-
tions], page 24) and propagated to Java. Exceptions raised from a Java callback
are translated back to the original Ada exception - or to Java Exception declared
in the AJIS.Java package, and propagated to Ada.

46

Chapter 5: Using javastub to Generate Ada Package Specifications

5 Using javastub to Generate Ada Package
Specifications

The javastub utility program generates an Ada package specification from a
Java class file that has native methods.

It is invoked as follows
$ javastub [filename.class] {filename.class}

where each ‘filename.class ’ is a class file for a Java class that has native
methods.

For each class file argument, javastub generates an Ada package specifica-
tion with subprograms corresponding to the native methods. The name of the
generated file is ‘filename_jni.ads ’.

The javastub utility is the Ada analog to the javah -jni command in the
Java Development Kit, which takes a class file as input and produces a C header
file with the correct function prototypes.

You can use javastub if you intend to use Ada, rather than C, to implement
the native methods in a Java class. You will then be responsible for doing the
necessary JNI programming, using the Ada binding to the C JNI library.

As an example, here is a simple Java class with a native method:
// Foo.java
class Foo{

native void bar(int i);

}

Compile the Java source file and then invoke javastub on the class file:
$ javac Foo.java

$ javastub Foo.class

The following file ‘foo_jni.ads ’ is generated by javastub :
-- Stub for class Foo
with Interfaces.Java.JNI; use Interfaces.Java.JNI;

package Foo_JNI is
-- Class: Foo
-- Method: bar
-- Signature: (I)V
procedure bar (Env : JNI_Env_Access; Obj : J_Object; P1 : J_Int);

pragma Export (C, bar, "Java_Foo_bar__I");

end Foo_JNI;

47

GNAT Ada-Java Interfacing Suite User’s Guide

48

Chapter 6: Using jvm2ada to Interface Ada with Java

6 Using jvm2ada to Interface Ada with Java
The jvm2ada tool is under development and is not supported in the current
GNAT-AJIS release.

49

GNAT Ada-Java Interfacing Suite User’s Guide

50

Appendix A: Using JNI Directly

Appendix A Using JNI Directly
This Appendix explains how to use the JNI services with Ada in the same
style as with C or C++ (i.e., with the program making explicit calls to the JNI
functions).

A.1 Introduction
Interfacing Ada with other languages is fairly straightforward when all lan-
guages run in the same environment and use the same memory model. For
example, C code can use Ada entities provided that these entities have the
proper convention. Likewise, Ada can access C entities just as easily.

However, the situation is not so simple with Java. Since Java programs are
running in a completely different environment, the Java Virtual Machine, it is
not possible to access Java directly from natively compiled Ada, or vice versa.
All communication – method invocation, parameter passing, data referencing –
has to go through an intermediate layer, the Java Native Interface (JNI).

JNI – a collection of C types and functions – has been used since Java’s
inception to interface Java with C and C++. It offers several capabilities:
• Implementing native Java methods in C or C++

• Invoking Java methods (both instance and static) from C or C++

• Referencing Java fields (both instance and static) from C or C++

This Appendix describes how to obtain these capabilities in Ada, using an Ada
binding to JNI. This is a low-level interface and is generally not as preferable
as using the GNAT-AJIS tools, but may sometimes be useful.

The Ada binding, supplied by GNAT-AJIS in the package JNI , is a “thin” bind-
ing to the C types and functions from ‘jni.h ’, and thus the documentation pro-
vided, for example, by http://java.sun.com/j2se/1.4.2/docs/guide/jni/ is
applicable to Ada / Java interfacing. This Appendix is mainly an introduction
to using JNI in an Ada context. For further details please refer to the above
website or to texts such as The Java Native Interface - Programmer’s Guide and
Specification, by Sheng Liang (Addison-Wesley, 1999).

A.2 Implementing a Native Method in Ada
This section illustrates how to build a Java application where a native method
is written in Ada. The build process consists of the following steps:
1. Write the Java class with the native method, and compile it
2. Generate an Ada specification corresponding to the native method
3. Write the body of the native method and compile it to a shared library or

DLL.

51

http://java.sun.com/j2se/1.4.2/docs/guide/jni/

GNAT Ada-Java Interfacing Suite User’s Guide

4. Run the Java application

These steps will now be described in more detail.

A.2.1 A Java class with a native method
The following example contains a native method that is to be implemented in
Ada:

public class Example1 {

native static int sum (int a, int b);

public static void main (String[] args) {

System.out.println (sum (10, 20));

}

static {

System.loadLibrary ("Example1_Pkg");

}

}

The library containing the native method needs to be loaded before the method
is invoked; this is conventionally accomplished by enclosing an invocation
of the loadLibrary method in a static initializer. The designated library,
‘Example1_Pkg ’, will be created at a later step.

You can compile this Java file to a class file in the usual way; e.g.:
$ javac Example1.java

which will generate the file ‘Example1.class ’

A.2.2 Generating an Ada specification
Although a native method can be implemented as a library-level subprogram,
for consistency it is probably simplest to declare it in a package:

with Interfaces.Java.JNI; use Interfaces.Java.JNI;

package Example1_Pkg is
function Sum (Env : JNI_Env_Access; Class : J_Class; A, B : J_Int)

return J_Int;

pragma Export (C, Sum, "Java_Example1_sum__II");

end Example1_Pkg;

The Sumfunction in Ada has two parameters that are not present in the native
method signature: Env, a handle on the JNI environment, and Class , a handle
on the class (Example1) in which the native method is defined. These parameters
are mandated by the JNI standard (although for an instance method the 2nd
parameter would be an object handle and not a class handle).

The A and B parameters correspond to the original method profile, using the
appropriate mapping of types across the two languages.

The Export pragma must include as an argument the symbol name for
the native method, here Java_Example1_sum__II , derived from its signature.

52

Appendix A: Using JNI Directly

More generally, the symbol name has one of the following forms, depending on
whether the method takes parameters:
Java_ PackageName_ClassName_MethodName
Java_ PackageName_ClassName_MethodName__ParamsSignature
Please note the following:
• Two consecutive _ (underscore) characters precede the ParamsSignature

component of the name.
• The PackageName_ component is absent if the Java class is defined in the

default (anonymous) package.
• The ParamsSignature is derived from the JNI method descriptor – (II)I

in this example – by removing the parentheses and dropping the result
type. Since Java does not allow overloading based on result type, there
is no risk of different native methods in the same class yielding the same
symbol name.

• Since Java is case sensitive, the symbol name string needs to mirror the
case of the Java identifiers. The casing of the Ada subprogram identifier
does not need to be the same as the corresponding Java method name,
although it will general assist readability if you use the same casing.

• Java’s case sensitivity means that you can have different native methods,
say foo() and Foo() , with the same parameter profile. Since Ada is not case
sensitive, you will need to declare different names for these subprograms,
e.g. foo_1 and Foo_2 .

The last part of the exported symbol, the parameters signature, is optional here,
since there is only one method named sum in the Java class. It is recommended
style, however, to include the parameters signature explicitly.

Each primitive Java type has a corresponding Ada type defined in the pack-
age JNI supplied with GNAT-AJIS:
boolean Interfaces.Java.JNI.J_Boolean

byte Interfaces.Java.JNI.J_Byte

char Interfaces.Java.JNI.J_Char

short Interfaces.Java.JNI.J_Short

int Interfaces.Java.JNI.J_Int

long Interfaces.Java.JNI.J_Long

float Interfaces.Java.JNI.J_Float

double Interfaces.Java.JNI.J_Double

Writing the JNI-compliant Ada specification manually is tedious; GNAT-AJIS
includes the javastub tool to automate this step by generating an appropriate

53

GNAT Ada-Java Interfacing Suite User’s Guide

Ada spec from a Java class file containing a native method to be implemented
in Ada:

$ javastub Example1.class

This command, the Ada analog to javah -jni for C, will generate the package
spec shown above.

A.2.3 Implementing the native method
The Ada implementation of the native method is straightforward:

package body Example1_Pkg is
function Sum (Env : JNI_Env_Access; Class : J_Class; A, B : J_Int)

return J_Int is
begin

return A + B;

end Sum;

end Example1_Pkg;

Since the Sumimplementation does not need to access any entities from the Java
environment, it ignores the Env and Class parameters.

Ada semantics apply to the execution of the function. For example, if A+B
overflows, the Constraint_Error exception is raised in the native code. Unless
it is handled locally, the exception is either lost or results in a JVM failure.
Thus, reliable Ada code called from Java should always contain an exception
handler.

A.2.4 Compiling to a shared library or DLL
The standard way to compile the Ada code is to use the gprbuild capabilities for
compilation of shared libraries. Assuming that the source files for the code are
located in a directory named ‘src ’, the project file will look like:

with "jni";

with "ajis";

project Test is

for Object_Dir use "obj";

for Source_Dirs use ("src");

for Library_Name use "test";

for Library_Kind use "dynamic";

for Library_Dir use "lib";

for Library_Auto_Init use "false";

for Library_Interface use ("Example1_Pkg");

54

Appendix A: Using JNI Directly

package Compiler is

for Default_Switches use AJIS.Compiler’Default_Switches;

end Compiler;

case AJIS.OS is

when "Windows_NT" =>

for Shared_Library_Prefix use "";

when others =>

null;

end case;

end Test;

Note that we’re reusing the flags provided by the AJIS installation directly,
rather than defining them ourselves. In addition to the usual libraries option
described in the GNAT User’s Guide, we need to say that, on Windows, the
library prefix is empty, as opposed to lib . lib is the default behavior, but it
would complicate the load of the library here.

Compiling the library with gprbuild is now straightforward:
$ gprbuild -P test.gpr

A.2.5 Running the program
Once you have all of the components in place – the Java class file and the native
library – you can run the application:

$ java Example1

results in execution of the Java statement
System.out.println (Example1.sum (10, 20));

which displays 30 on the screen.

A.3 Interfacing to an Existing Ada API
The style of interfacing illustrated in the previous section is the most direct way
of using JNI to call Ada subprograms from Java. However, when interfacing to
an existing API, you will need to supply Ada “wrappers” that satisfy the JNI
requirements for the parameters in the C function prototypes corresponding to
native methods.

For example, suppose you would like to invoke the following Ada subprogram
from Java:

function Addition (A, B : Positive) return Positive;

A corresponding Java native method declaration is:
class Example2 {

static native int addition (int a, int b);

}

and then a “wrapper” in Ada is necessary, corresponding to the subprogram that
is actually called when the native method is invoked:

55

GNAT Ada-Java Interfacing Suite User’s Guide

function Addition_Wrapper (Env : JNI_Env_Access;

Class : J_Class;

A, B : J_Int)

return J_Int;

pragma Export (C, Addition_Wrapper, "Java_Example2_addition__II");

function Addition_Wrapper (Env : JNI_Env_Access;

Class : J_Class;

A, B : J_Int)

return J_Int is
begin

return J_Int (Addition (Positive (A), Positive (B)));

end Addition_Wrapper;

As a point of style, when invoking a native Ada method whose formal parameters
are constrained (here of subtype Positive) you should ensure that the actual
parameters satisfy the constraints. Otherwise the resulting constraint violation
will either fail silently or crash the JVM.

In the above example, the wrapper function is ignoring the Env and Class
parameters. Later examples will show how these parameters can be used, when
the Ada subprogram needs to access entities from the Java side.

A.4 Calling a Java Method from Ada
The JNI package allows you to invoke Java methods from Ada. For example:

class Example3 {

static int addition (int a, int b) {

return a + b;

}

}

The natural corresponding Ada subprogram has the profile:
function Addition (A, B : J_Int) return J_Int;

Implementing this subprogram to invoke the Java method requires dealing with
several issues.

First, the code has to execute properly in the context of the current Java
thread, and for this to happen a call to Attach_Current_Thread is needed if it
hasn’t been done yet. This call also requires a handle on the virtual machine
itself that is represented by the variable Main_VM:

Attach_Current_Thread (Main_VM, Env’Access, System.Null_Address);

Second, you need to obtain a handle on the Java method and then invoke the
method through the handle. A method handle is of type J_Method_ID . It is
initialized through the function Get_Method_ID , declared as follows:

56

Appendix A: Using JNI Directly

function Get_Method_ID

(Env : JNI_Env_Access;

Class : J_Class;

Name : String;

Profile : String) return J_Method_ID;

A handle to the class is needed as well. It can be obtained via Find_Class ,
declared as follows:

function Find_Class

(Env : JNI_Env_Access; Name : String) return J_Class;

Thus, the call sequence starts with:

Class := Find_Class (Env, "LExample3;");

Addition_ID := Get_Method_ID (Env, Class, "Addition", "(II)I");

Note the differences between the class name above and the relevant part of
the Linker Name in the export Pragma for procedure Addition_Wrapper in the
previous section. Example3 appears as Example3 in one case and LExample3;
in the other. Similarly, the profile appears as II in one case and (II)I in the
other. Those differences are explained in the official JNI documentation.

The final step is to invoke one of the JNI functions for calling Java methods.
There are a several of these, each of them handling a special kind of return
type. Here, we are interested in Call_Static_Int_Method_A , which returns a
J_Int and works on static subprograms. Its profile is:

function Call_Static_Int_Method_A

(Env : JNI_Env_Access;

Object : J_Class;

Method_ID : J_Method_ID;

Args : J_Value_Array) return J_Int;

Parameters are passed to the method using a J_Value_Array , which is an array
of J_Value elements. A J_Value is a discriminated record that can hold any of
the J_ types. Two integers can be passed with the following code:

Result := Call_Static_Int_Method_A

(Env, Class, Addition_ID, J_Value_Array’((Jint, 23), (Jint, 42)));

Here is the complete code for the Ada wrapper function:

57

GNAT Ada-Java Interfacing Suite User’s Guide

function Addition (A, B : Integer) return Integer is
Env : aliased JNI_Env_Access;

Class : J_Class;

Addition_ID : J_Method_ID;

Result : J_Int;

begin
Result := Attach_Current_Thread

(Main_VM, Env’Access, System.Null_Address);

Class := Find_Class (Env, String’("LExample3;"));

Addition_ID := Get_Method_ID (Env, Class, "addition", "(II)I");

Result := Call_Static_Int_Method_A

(Env,

Class,

Addition_ID,

((Jint, J_Int (A)), (Jint, J_Int (B))));

return Integer (Result);

end Addition;

A.5 Using Ada Objects from Java
Consider the following Ada record:

type Storage is record
A, B, C : Integer;

end record;

Suppose we would like to manipulate objects of this type in Java. Let’s consider
the following API:

function Create return Storage;

-- Return an object of type Storage.

function Compute (S : Storage) return Integer;

-- Return the sum of the elements stored in Storage.

The first issue is how to pass an Ada object to Java. Given the fundamen-
tal difference in execution environments, objects cannot simply be passed by
reference as is commonly done in Ada/C interfacing. There are two possible ap-
proaches: either marshall/unmarshall values using an intermediate form, such
as a string, each time the language boundary is crossed, or else manipulate
the object in its native language while the other language accesses it through
a handle. Since the first possibility is both complex and costly, let’s look at the
second alternative.

On the Ada side, a handle is represented as an access value pointing to a
heap-allocated object. On the Java side, it cannot be represented as a Java
reference, because the Java heap is managed differently from the Ada heap –
most importantly, the Java heap is garbage collected. Therefore, unchecked
conversion is used to convert in both directions between the Ada access value
and a Java int (J_Int).

58

Appendix A: Using JNI Directly

(Note: in this example, we assume that access values are 32 bits, which is
not always the case. A real example would need to deal with this issue.)

Here is the Java interface corresponding to the above API:
class Storage {

public native static int Create ();

public native static int Compute (int S);

}

This can be used naturally as:
int myStorageObject = Storage.Create ();

int result = Storage.Compute (myStorageObject);

Let’s see the glue code needed to make this work. First, let’s create the Ada
analogs of the Java routines above using the methods shown in previous sec-
tions:

function Create (Env : JNI_Env_Access; Class : J_Class) return J_Int;

pragma Export (C, Create, "Java_Storage_Create__");

function Compute

(Env : JNI_Env_Access; Class : J_Class; S : J_Int) return J_Int;

pragma Export (C, Compute, "Java_Storage_Compute__I");

Since the original Ada function Create directly returns a value as opposed to
a handle on this value, the wrapper function has to create an instance of this
object that can be referenced. Here is a possible implementation:

type Storage_Access is access all Storage;

procedure Convert is new Ada.Unchecked_Conversion (Storage_Access, J_Int);

function Create (Env : JNI_Env_Access; Class : J_Class) return J_Int is
Obj : Storage_Access := new Storage’(Create);

begin
return Convert (Obj);

end Create;

The code allocates the object on the heap, initialized with the result of the origi-
nal Create function. In a real application, the API would need to be augmented
with a routine that reclaims the memory when the object is no longer used.

The implementation of the Compute wrapper illustrates how the handle can
be converted back and used in its native context:

procedure Convert is new Ada.Unchecked_Conversion (J_Int, Storage_Access);

function Compute

(Env : JNI_Env_Access; Class : J_Class; S : J_Int) return J_Int is
Obj : Storage_Access := Convert (S);

begin
return J_Int (Compute);

end Compute;

59

GNAT Ada-Java Interfacing Suite User’s Guide

One issue with this approach is that type safety is not preserved when crossing
the language boundary. The Compute function accepts any parameter of type
int , but it can only process properly those int s that are returned by Create .
The situation can be slightly improved, at least on the Java side, by providing
the following overloadings of Create and Compute :

class Storage {

private int addr;

public void Create () {

addr = Create;

}

public int Compute () {

return Compute (addr);

}

private native static int Create;

private native static int Compute (int S);

}

which can be used as follows:
Storage myStorageObject = new Storage ();

myStorageObject.Create ();

int result = myStorageObject.Compute ();

Now it is guaranteed that Compute will be used only with objects created by
Create .

A.6 Using Java Objects from Ada
Let’s examine the opposite direction, where a Java class is used from Ada:

class Storage {

int A, B, C;

public static Storage Create () {

Storage obj = new Storage;

obj.A = 1;

obj.B = 2;

obj.C = 3;

return obj;

}

public int Compute () {

return A + B + C;

}

}

60

Appendix A: Using JNI Directly

We would like to create an object of this type in Ada and call its primitives such
as the Compute subprogram.

Let’s first create Ada wrappers around Create and Compute . Once again,
we need to find the proper representation for the handle to the actual object.
Conveniently, JNI offers a build-in type, J_Object , which represents references
to any Java objects. Therefore, here is what Create would look like:

function Create return J_Object is
Env : aliased JNI_Env_Access;

Class : J_Class;

Create_ID : J_Method_ID;

Parameters : J_Value_Array (1 .. 0);

Result : J_Object;

begin
Attach_Current_Thread (Main_VM, Env’Access, System.Null_Address);

Class := Find_Class (Env, "LStorage;");

Create_ID

:= Get_Method_ID (Env, Class, "Create", "()LStorage;");

Result := Call_Static_Object_Method_A

(Env, Class, Addition_ID, Parameters);

return Result;

end Addition;

The structure of this subprogram is very close to the one shown in the previ-
ous section. Here it directly returns an object reference instead of an integer
representing the address. This is why the parameter profile is a bit different:
the returned type is a Storage instance. Furthermore, the calling method is
Call_Static_Object_Method_A instead of Call_Static_Int_Method_A .

Similarly, the wrapper for the Compute function looks like:

function Compute (This : J_Object) return J_Int is
Env : aliased JNI_Env_Access;

Class : J_Class;

Compute_ID : J_Method_ID;

Parameters : J_Value_Array (1 .. 0);

Result : J_Int;

begin
Attach_Current_Thread (Main_VM, Env’Access, System.Null_Address);

Class := Find_Class (Env, "LStorage;");

Compute_ID

:= Get_Method_ID (Env, Class, "Compute", "()I");

Result := Call_Integer_Method_A (Env, This, Compute_ID, Parameters);

return Result;

end Addition;

Here is how this API can be used on the Ada side:

61

GNAT Ada-Java Interfacing Suite User’s Guide

declare
My_Storage_Object : J_Object;

Result : J_Int;

begin
My_Storage_Object := Create;

Result := Compute (My_Storage_Object);

end;

Note once again the loss of type safety in crossing the language boundary. There
is no static check ensuring that a Storage object is indeed passed to Compute .
Here is a possible way to reintroduce partial type safety:

type Storage is new J_Object;

function Create return Storage;

function Compute (S : Storage) return J_Int

62

Appendix A: Index

Index

-
‘--assume-escaped’ option (for ada2java)

. 11, 34
‘--attach’ option (for ada2java) 11
‘--attach-access’ option (for ada2java) . . 46
‘--attach-ada2005’ option (for ada2java)

. 46
‘--attach-controlling’ option (for ada2java)

. 46
‘--attach-parameter’ option (for ada2java)

. 46
‘--java-enum’ option (for ada2java) 11
‘--link-method’ option (for ada2java) 10
‘--main-class’ option (for ada2java) 10
‘--monitor’ option (for ada2java) 11
‘--monitor-finalize’ option (for ada2java)

. 11
‘--no-assume-escaped’ option (for ada2java)

. 11, 34
‘--no-attach’ option (for ada2java) 11
‘--no-attach-access’ option (for ada2java)

. 46
‘--no-attach-ada2005’ option (for ada2java)

. 46
‘--no-attach-controlling’ option (for

ada2java). 46
‘--no-attach-parameter’ option (for

ada2java). 46
‘--no-java-enum’ option (for ada2java) 11
‘--no-monitor’ option (for ada2java) 11
‘--no-monitor-finalize’ option (for

ada2java) . 11
‘-b’ option (for ada2java) 9
‘-c’ option (for ada2java) 9
‘-fno-strict-aliasing’ option (for gcc) . . 11
‘-fPIC’ option (for gcc) 12
‘-fstack-check’ option (for gcc) 12
‘-h’ option (for ada2java) 9
‘-L’ option (for ada2java) 10
‘-M’ option (for ada2java) 10, 12
‘-o’ option (for ada2java) 9
‘-O’ option (for gcc) . 11
‘-P’ option (for ada2java) 10

A
ADA_PROJECT_PATH environment variable 5
ada2java . 3
ada2java command . 9
‘Ada2Java’ directory . 7
AdaProxy class . 39
AJIS.Annotations package 14
Array types (mapping to Java). 16
ASIS . 4
Assume_Escaped (argument to pragma

Annotate). 33
Attachment (of entities to a class) 15, 22

C
Class-wide parameters (mapping to Java) . . 19
CLASSPATH environment variable 5
Clone and copy semantics 39
clone method (in AdaProxy class) 39
com.adacore.ajis.IProxy.Owner type 31
com.adacore.ajis.NativeException 46
Compatibility (of GNAT-AJIS and GNAT) . . 4
Constraint checks . 16
Controlled types . 44
Current limitations . 26

D
Default class . 15, 21, 45

E
Enumeration types (mapping to Java) 16
Equality . 37
Exception propagation 46

G
getOwner method . 31
Global reference . 42
Global variables (mapping to Java) 21
gprbuild usage . 7

63

GNAT Ada-Java Interfacing Suite User’s Guide

I
Inheritance (cross-language) 39
Installation of GNAT-AJIS 4
IProxy.getAllocator function 32

J
javastub . 3
javastub command . 47
JGNAT . 3
jvm2ada . 3
jvm2ada command . 49

L
LD_LIBRARY_PATH environment variable 5
‘Library.java’ file . 7
Locking (argument to pragma Annotate) . . 35
‘locking’ option (for ada2java) 37
‘locking-finalize’ option (for ada2java) . . 37

M
Memory management . 42
Memory model . 28

N
Name clashes . 27
Native object equality . 37
‘no-locking’ option (for ada2java) 37
‘no-locking-finalize’ option (for ada2java)

. 37

O
Ownership (of native objects) 30

P
Parameters (mapping to Java) 22
PATH environment variable 5
pragma Annotate. 14, 27
Predefined environment (mapping to Java)

. 25
Proxy object . 28, 31

R
Record types (mapping to Java) 17
Regular global reference 42
Renamings (mapping to Java) 25

S
SAL (Stand-Alone Library) project 12
Scalar types (mapping to Java) 15
Shadow native object . 41
Shared libraries . 12
Strings (mapping to Java) 17
Subprograms (mapping to Java) 21

T
Tagged types (mapping to Java) 19
Thread safety . 35

U
UTF-16 encoding . 17
UTF-8 encoding . 17

W
Weak global reference . 42

64

Table of Contents

About This Guide . 1
What This Guide Contains . 1
What You Should Know before Reading This Guide . 1

1 Getting Started with GNAT-AJIS 3
1.1 Introduction . 3
1.2 GNAT-AJIS Installation Structure . 3
1.3 GNAT-AJIS / GNAT Compatibility . 4
1.4 A Simple Example: Calling Ada from Java . 4

1.4.1 Environment Setup . 5
1.4.2 An Ada Package . 6
1.4.3 Invoking ada2java . 6
1.4.4 Compiling the Java class . 7
1.4.5 Building the Application . 7
1.4.6 Running the Program . 8

2 Using ada2java to Generate Java Classes 9
2.1 Using the Tool . 9
2.2 Compiling and Running the Generated Code . 11

2.2.1 Issues with the Ada Generated Code . 11
2.2.2 Compiling as an Ada Shared Library . 12
2.2.3 Compiling as an Ada Main Subprogram . 12
2.2.4 Compiling the Java Generated Classes . 13

2.3 Pragma Annotate and ada2java . 14

3 Mapping Ada to Java . 15
3.1 Types . 15

3.1.1 Scalar Types . 15
3.1.2 Arrays . 16
3.1.3 Strings . 17
3.1.4 Simple Record Types . 17
3.1.5 Tagged Types . 19

3.1.5.1 General principles . 19
3.1.5.2 Ada type hierarchies . 20
3.1.5.3 Java class hierarchies . 20

3.2 Global Variables and Constants . 21
3.3 Subprograms . 21

3.3.1 Method placement . 21

i

GNAT Ada-Java Interfacing Suite User’s Guide

3.3.2 Subprogram parameters . 22
3.4 Subprogram Access Types . 23
3.5 Exceptions . 24
3.6 Renamings . 25
3.7 Generics . 25
3.8 Predefined Environment . 25
3.9 Current Limitations . 26

4 Advanced ada2java Topics . 27
4.1 Dealing with Name Clashes . 27
4.2 Memory Model . 28

4.2.1 Requirements for Non-null Parameter Values 28
4.2.2 Allocating Ada Objects from Java . 29
4.2.3 Automatic Creation of Native Objects . 29
4.2.4 Native Ownership . 30
4.2.5 Object Allocators . 32
4.2.6 Restrictions on Proxy-Owned Objects Passed to Subprograms

. 32
4.3 Thread Safety . 35
4.4 Proxies and Native Object Equality . 37
4.5 Clone and Copy Semantics . 39
4.6 Cross-Language Inheritance . 39

4.6.1 Inheriting from a Java Proxy . 39
4.6.2 Cross Language Dispatching from Ada . 40
4.6.3 The Shadow Native Object . 41

4.6.3.1 Basic Properties . 41
4.6.3.2 Memory Management . 41
4.6.3.3 Shadow Object Equality . 42
4.6.3.4 Shadow Object Cloning . 43

4.6.4 Controlled Types . 44
4.7 Managing Attachment to Java Proxies . 45
4.8 Exceptions propagation . 46

5 Using javastub to Generate Ada Package
Specifications . 47

6 Using jvm2ada to Interface Ada with Java 49

ii

Appendix A Using JNI Directly . 51
A.1 Introduction . 51
A.2 Implementing a Native Method in Ada . 51

A.2.1 A Java class with a native method . 52
A.2.2 Generating an Ada specification . 52
A.2.3 Implementing the native method . 54
A.2.4 Compiling to a shared library or DLL . 54
A.2.5 Running the program . 55

A.3 Interfacing to an Existing Ada API . 55
A.4 Calling a Java Method from Ada . 56
A.5 Using Ada Objects from Java . 58
A.6 Using Java Objects from Ada . 60

Index . 63

iii

GNAT Ada-Java Interfacing Suite User’s Guide

iv

	About This Guide
	What This Guide Contains
	What You Should Know before Reading This Guide

	Getting Started with GNAT-AJIS
	Introduction
	GNAT-AJIS Installation Structure
	GNAT-AJIS / GNAT Compatibility
	A Simple Example: Calling Ada from Java
	Environment Setup
	An Ada Package
	Invoking ada2java
	Compiling the Java class
	Building the Application
	Running the Program

	Using ada2java to Generate Java Classes
	Using the Tool
	Compiling and Running the Generated Code
	Issues with the Ada Generated Code
	Compiling as an Ada Shared Library
	Compiling as an Ada Main Subprogram
	Compiling the Java Generated Classes

	Pragma Annotate and ada2java

	Mapping Ada to Java
	Types
	Scalar Types
	Arrays
	Strings
	Simple Record Types
	Tagged Types
	General principles
	Ada type hierarchies
	Java class hierarchies

	Global Variables and Constants
	Subprograms
	Method placement
	Subprogram parameters

	Subprogram Access Types
	Exceptions
	Renamings
	Generics
	Predefined Environment
	Current Limitations

	Advanced ada2java Topics
	Dealing with Name Clashes
	Memory Model
	Requirements for Non-null Parameter Values
	Allocating Ada Objects from Java
	Automatic Creation of Native Objects
	Native Ownership
	Object Allocators
	Restrictions on Proxy-Owned Objects Passed to Subprograms

	Thread Safety
	Proxies and Native Object Equality
	Clone and Copy Semantics
	Cross-Language Inheritance
	Inheriting from a Java Proxy
	Cross Language Dispatching from Ada
	The Shadow Native Object
	Basic Properties
	Memory Management
	Shadow Object Equality
	Shadow Object Cloning

	Controlled Types

	Managing Attachment to Java Proxies
	Exceptions propagation

	Using javastub to Generate Ada Package Specifications
	Using jvm2ada to Interface Ada with Java
	Using JNI Directly
	Introduction
	Implementing a Native Method in Ada
	A Java class with a native method
	Generating an Ada specification
	Implementing the native method
	Compiling to a shared library or DLL
	Running the program

	Interfacing to an Existing Ada API
	Calling a Java Method from Ada
	Using Ada Objects from Java
	Using Java Objects from Ada

	Index

