
AUnit Cookbook
AUnit - version 3.8.0w

Configuration level $Revision: 314387 $
Date: 30 April 2015

AdaCore

http://www.adacore.com

http://www.adacore.com

Copyright c© 2000-2014, AdaCore

This document may be copied, in whole or in part, in any form or by any means, as is or with
alterations, provided that (1) alterations are clearly marked as alterations and (2) this copyright
notice is included unmodified in any copy.

i

Table of Contents

1 Introduction . 1
1.1 What’s new in AUnit 3 . 1
1.2 Examples . 1
1.3 Note about limited run-times . 1
1.4 Thanks . 1

2 Overview . 3

3 Test Case . 7
3.1 AUnit.Simple Test Cases . 7
3.2 AUnit.Test Cases . 7
3.3 AUnit.Test Caller . 9

4 Fixture . 11

5 Suite . 13
5.1 Creating a Test Suite . 13
5.2 Composition of Suites . 14

6 Reporting . 15
6.1 Text output . 15
6.2 XML output . 16

7 Test Organization . 17
7.1 General considerations . 17
7.2 OOP considerations . 17

7.2.1 Using AUnit.Test Fixtures . 18
7.2.2 Using AUnit.Test Cases . 20

7.3 Testing generic units . 23

8 Using AUnit with Restricted Run-Time Libraries 25

9 Installation and Use . 27
9.1 Note on gprbuild . 27
9.2 Support for other platforms/run-times . 27
9.3 Installing AUnit . 27
9.4 Installed files . 28

10 GPS Support . 29

Chapter 1: Introduction 1

1 Introduction

This is a short guide for using the AUnit test framework. AUnit is an adaptation of the Java
JUnit (Kent Beck, Erich Gamma) and C++ CppUnit (M. Feathers, J. Lacoste, E. Sommerlade,
B. Lepilleur, B. Bakker, S. Robbins) unit test frameworks for Ada code.

1.1 What’s new in AUnit 3

AUnit 3 brings several enhancements over AUnit 2 and AUnit 1:

• Removal of the genericity of the AUnit framework, making the AUnit 3 API as close as
possible to AUnit 1.

• Emulates dynamic memory management for limited run-time profiles.

• Provides a new XML reporter, and changes harness invocation to support easy switching
among text, XML and customized reporters.

• Provides new tagged types Simple Test Case, Test Fixture and Test Caller that correspond
to CppUnit’s TestCase, TestFixture and TestCaller classes.

• Emulates exception propagation for restricted run-time profiles (e.g. ZFP), by using the
gcc builtin setjmp/longjmp mechanism.

• Reports the source location of an error when possible.

1.2 Examples

With this version, we have provided new examples illustrating the enhanced fea-
tures of the framework. These examples are in the AUnit installation directory:
<aunit-root>/share/examples/aunit, and are also available in the source distribution
aunit-3.8.0w-src/examples.

The following examples are provided:

• simple test: shows use of AUnit.Simple Test Cases (see Section 3.1 [AU-
nit.Simple Test Cases], page 7).

• test caller: shows use of AUnit.Test Caller (see Section 3.3 [AUnit.Test Caller], page 9).

• test fixture: example of a test fixture (see Chapter 4 [Fixture], page 11).

• liskov: This suite tests conformance to the Liskov Substitution Principle of a pair of simple
tagged types. (see Section 7.2 [OOP considerations], page 17)

• failures: example of handling and reporting failed tests (see Chapter 6 [Reporting], page 15).

• calculator: a full example of test suite organization.

1.3 Note about limited run-times

AUnit allows a great deal of flexibility as to the structure of test cases, suites and harnesses.
The templates and examples given in this document illustrate how to use AUnit while staying
within the constraints of the GNAT Pro restricted and Zero Foot Print (ZFP) run-time libraries.
Therefore, they avoid the use of dynamic allocation and some other features that would be
outside of the profiles corresponding to these libraries. Tests targeted to the full Ada run-time
library need not comply with these constraints.

1.4 Thanks

This document is adapted from the JUnit and CppUnit Cookbooks documents contained in
their respective release packages.

Special thanks to Francois Brun of Thales Avionics for his ideas about support for OOP
testing.

Chapter 2: Overview 3

2 Overview

How do you write testing code?

The simplest way is as an expression in a debugger. You can change debug expressions
without recompiling, and you can wait to decide what to write until you have seen the running
objects. You can also write test expressions as statements that print to the standard output
stream. Both styles of tests are limited because they require human judgment to analyze their
results. Also, they don’t compose nicely - you can only execute one debug expression at a time
and a program with too many print statements causes the dreaded "Scroll Blindness".

AUnit tests do not require human judgment to interpret, and it is easy to run many of them
at the same time. When you need to test something, here is what you do:

1. Derive a test case type from AUnit.Simple_Test_Cases.Test_Case.

Several test case types are available:

• AUnit.Simple_Test_Cases.Test_Case: the base type for all test cases. Needs over-
riding of Name and Run_Test.

• AUnit.Test_Cases.Test_Case: the traditional AUnit test case type, allowing multiple
test routines registration, each being run and reported independently.

• AUnit.Test_Fixtures.Test_Fixture: used together with AUnit.Test_Caller, this
allows easy creation of test suites comprising several test cases that share the same
fixture (see Chapter 4 [Fixture], page 11).

See Chapter 3 [Test Cases], page 7, for simple examples of use of these types.

2. When you want to check a value1, use one of the following Assert2 methods:� �
AUnit.Assertions.Assert (Boolean Expression, String Description);
 	
or:� �
if not AUnit.Assertions.Assert (Boolean Expression, String Description) then

return;

end if;
 	
If you need to test that a method raises an expected exception, there is the procedure
Assert_Exception that takes an access value designating the procedure to be tested as a
parameter:

1 While JUnit and some other members of the xUnit family of unit test frameworks provide specialized forms
of assertions (e.g. assertEqual), we took a design decision in AUnit not to provide such forms. Ada has a
much more rich type system giving a plethora of possible scalar types, and leading to an explosion of possible
special forms of assert routines. This is exacerbated by the lack of a single root type for most types, as is
found in Java. With the introduction of AUnit 2 for use with restricted run-time profiles, where even ’Image
is missing, providing a comprehensive set of special assert routines in the framework itself becomes even more
unrealistic. Since AUnit is intended to be an extensible toolkit, users can certainly write their own custom
collection of such assert routines to suit local usage.

2 Note that in AUnit 3, and contrary to AUnit 2, the procedural form of Assert has the same behavior whatever
the underlying Ada run-time library: a failed assertion will cause the execution of the calling test routine to
be abandoned. The functional form of Assert always continues on a failed assertion, and provides you with
a choice of behaviors.

4 AUnit Cookbook� �
type Throwing_Exception_Proc is access procedure;

procedure Assert_Exception

(Proc : Throwing_Exception_Proc;

Message : String;

Source : String := GNAT.Source_Info.File;

Line : Natural := GNAT.Source_Info.Line);

-- Test that Proc throws an exception and record "Message" if not.
 	
Example:� �
-- Declared at library level:

procedure Test_Raising_Exception is

begin

call_to_the_tested_method (some_args);

end Test_Raising_Exception;

-- In test routine:

procedure My_Routine (...) is

begin

Assert_Exception (Test_Raising_Exception’Access, String Description);
end;
 	
This procedure can handle exceptions with all run-time profiles (including zfp). If you are
using a run-time library capable of propagating exceptions, you can use the following idiom
instead:� �
procedure My_Routine (...) is

begin

...

-- Call subprogram expected to raise an exception:

Call_To_The_Tested_Method (some_args);

Assert (False, ‘‘exception not raised’’);

exception

when desired_exception =>

null;

end My_Procedure;
 	
An unexpected exception will be recorded as such by the framework. If you want your test
routine to continue beyond verifying that an expected exception has been raised, you can
nest the call and handler in a block.

3. Create a suite function inside a package to gather together test cases and sub-suites3.

4. At any level at which you wish to run tests, create a harness by instantiating procedure
AUnit.Run.Test_Runner or function AUnit.Run.Test_Runner_With_Status with the top-
level suite function to be executed. This instantiation provides a routine that executes all
of the tests in the suite. We will call this user-instantiated routine Run in the text for
backward compatibility to tests developed for AUnit 1. Note that only one instance of
Run can execute at a time. This is a tradeoff made to reduce the stack requirement of the
framework by allocating test result reporting data structures statically.

It is possible to pass a filter to a Test_Runner, so that only a subset of the tests run. In
particular, this filter could be initialized from a command line parameter. See the package
AUnit.Test_Filters for an example of such a filter. AUnit does not automatically initialize
this filter from the command line both because it would not be supported with some of the
limited runtimes (zero footprint for instance), and because you might want to pass the

3 If using the ZFP or the ’cert’ run-time profiles, test cases and suites must be allocated using
AUnit.Memory.Utils.Gen_Alloc, AUnit.Test_Caller.Create, AUnit.Test_Suites.New_Suite, or be
statically allocated.

Chapter 2: Overview 5

argument through different ways (as a parameter to switch, or a stand-alone command line
argument for instance).

It is also possible to control the contents of the output report by passing an object of type
AUnit_Options to the Test_Runner. See package AUnit.Options for details.

5. Build the code that calls the harness Run routine using gnatmake or gprbuild. The GNAT
project file aunit.gpr contains all necessary switches, and should be imported into your root
project file.

Chapter 3: Test Case 7

3 Test Case

In this chapter, we will introduce how to use the various forms of Test Cases. We will illustrate
with a very simple test routine, that verifies that the sum of two Moneys with the same currency
result in a value which is the sum of the values of the two Moneys:� �
declare

X, Y: Some_Currency;

begin

X := 12; Y := 14;

Assert (X + Y = 26, "Addition is incorrect");

end;
 	
The following sections will show how to use this test method using the different test case

types available in AUnit.

3.1 AUnit.Simple Test Cases

AUnit.Simple_Test_Cases.Test_Case is the root type of all test cases. Although generally
not meant to be used directly, it provides a simple and quick way to run a test.

This tagged type has several methods that need to be defined, or may be overridden.

• function Name (T : Test_Case) return Message_String is abstract:

This function returns the Test name. You can easily translate regular strings to Mes-
sage String using AUnit.Format. For example:� �
function Name (T : Money Test) return Message_String is

begin

return Format ("Money Tests");
end Name;
 	

• procedure Run_Test (T : in out Test_Case) is abstract:

This procedure contains the test code. For example:� �
procedure Run_Test (T : in out Money Test) is

X, Y: Some Currency;
begin

X := 12; Y := 14;
Assert (X + Y = 26, "Addition is incorrect");

end Run_Test;
 	
• procedure Set_Up (T : in out Test_Case); and procedure Tear_Down (T : in out

Test_Case); (default implementations do nothing):

These procedures are meant to respectively set up or tear down the environment before
running the test case. See Chapter 4 [Fixture], page 11, for examples of how to use these
methods.

You can find a compilable example of AUnit.Simple_Test_Cases.Test_Case usage in
your AUnit installation directory: <aunit-root>/share/examples/aunit/simple test/ or from the
source distribution aunit-3.8.0w-src/examples/simple test/

3.2 AUnit.Test Cases

AUnit.Test_Cases.Test_Case is derived from AUnit.Simple_Test_Cases.Test_Case and de-
fines its Run_Test procedure.

8 AUnit Cookbook

It allows a very flexible composition of Test routines inside a single test case, each being
reported independently.

The following subprograms must be considered for inheritance, overriding or completion:

• function Name (T : Test_Case) return Message_String is abstract; Inherited. See
Section 3.1 [AUnit.Simple Test Cases], page 7.

• procedure Set_Up (T : in out Test_Case) and procedure Tear_Down (T : in out

Test_Case) Inherited. See Section 3.1 [AUnit.Simple Test Cases], page 7.

• procedure Set_Up_Case (T : in out Test_Case) and procedure Tear_Down_Case (T :

in out Test_Case) Default implementation does nothing.

The latter procedures provide an opportunity to Set Up and Tear Down the test case
before and after all test routines have been executed. In contrast, the inherited Set_Up and
Tear_Down are called before and after the execution of each individual test routine.

• procedure Register_Tests (T : in out Test_Case) is abstract This procedure must
be overridden. It is responsible for registering all the test routines that will be run.
You need to use either Registration.Register_Routine or the generic Specific_Test_

Case.Register_Wrapper methods defined in AUnit.Test_Cases to register a routine. A
test routine has the form:� �
procedure Test_Routine (T : in out Test_Case’Class);
 	
or� �
procedure Test_Wrapper (T : in out Specific_Test_Case’Class);
 	
The former procedure is used mainly for dispatching calls (see Section 7.2 [OOP consider-
ations], page 17).

Using this type to test our money addition, the package spec is:� �
with AUnit; use AUnit;

with AUnit.Test_Cases; use AUnit.Test_Cases;

package Money Tests is

type Money Test is new Test_Cases.Test_Case with null record;

procedure Register_Tests (T: in out Money Test);
-- Register routines to be run

function Name (T: Money Test) return Message_String;

-- Provide name identifying the test case

-- Test Routines:

procedure Test Simple Add (T : in out Test_Cases.Test_Case’Class);

end Money Tests;
 	
The package body is:

Chapter 3: Test Case 9� �
with AUnit.Assertions; use AUnit.Assertions;

package body Money Tests is

procedure Test Simple Add (T : in out Test_Cases.Test_Case’Class) is

X, Y : Some Currency;
begin

X := 12; Y := 14;
Assert (X + Y = 26, "Addition is incorrect");

end Test Simple Add;

-- Register test routines to call

procedure Register_Tests (T: in out Money Test) is

use AUnit.Test_Cases.Registration;

begin

-- Repeat for each test routine:

Register_Routine (T, Test Simple Add’Access, "Test Addition");
end Register_Tests;

-- Identifier of test case

function Name (T: Money Test) return Test_String is

begin

return Format ("Money Tests");
end Name;

end Money Tests;
 	
3.3 AUnit.Test Caller

Test_Caller is a generic package that is used with AUnit.Test_Fixtures.Test_Fixture.
Test_Fixture is a very simple type that provides only the Set_Up and Tear_Down procedures.
This type is meant to contain a set of user-defined test routines, all using the same Set up and
Tear down mechanisms. Once those routines are defined, the Test Caller package is used to
incorporate them directly into a test suite.

With our money example, the Test Fixture is:� �
with AUnit.Test_Fixtures;

package Money Tests is

type Money Test is new AUnit.Test_Fixtures.Test_Fixture with null record;

procedure Test Simple Add (T : in out Money Test);

end Money Tests;
 	
The test suite (see Chapter 5 [Suite], page 13) calling the test cases created from this

Test Fixture is:� �
with AUnit.Test_Suites;

package Money_Suite is

function Suite return AUnit.Test_Suites.Access_Test_Suite;

end Money_Suite;
 	
With the corresponding body:

10 AUnit Cookbook� �
with AUnit.Test_Caller;

with Money_Tests;

package body Money_Suite is

package Money_Caller is new AUnit.Test_Caller

(Money_Tests.Money_Test);

function Suite return Aunit.Test_Suites.Access_Test_Suite is

Ret : AUnit.Test_Suites.Access_Test_Suite :=

AUnit.Test_Suites.New_Suite;

begin

Ret.Add_Test

(Money_Caller.Create

("Money Test : Test Addition",
Money Tests.Test Simple Add’Access));

return Ret;

end Suite;

end Money_Suite;
 	
Note that New_Suite and Create are fully compatible with limited run-times (in particu-

lar, those without dynamic allocation support). Note, however, that for non-native run-time
libraries, you cannot extend Test_Fixture with a controlled component.

You can find a compilable example of AUnit.Test_Caller use in the AUnit installation di-
rectory: <aunit-root>/share/examples/aunit/test caller/ or from the source distribution aunit-
3.8.0w-src/examples/test caller/

Chapter 4: Fixture 11

4 Fixture

Tests need to run against the background of a set of known entities. This set is called a test
fixture. When you are writing tests you will often find that you spend more time writing code
to set up the fixture than you do in actually testing values.

You can make writing fixture code easier by sharing it. Often you will be able to use the same
fixture for several different tests. Each case will send slightly different messages or parameters
to the fixture and will check for different results.

When you have a common fixture, here is what you do:

1. Create a Test Case package as in previous section.

2. Declare variables or components for elements of the fixture either as part of the test case
type or in the package body.

3. According to the Test Case type used, override its Set_Up and/or Set_Up_Case method:

• AUnit.Simple_Test_Cases: Set_Up is called before Run_Test.

• AUnit.Test_Cases: Set_Up is called before each test routine while Set_Up_Case is
called once before the routines are run.

• AUnit.Test_Fixture: Set_Up is called before each test case created using
Aunit.Test_Caller.

4. You can also override Tear_Down and/or Tear_Down_Case that are executed after the test
is run.

For example, to write several test cases that want to work with different combinations of 12
Euros, 14 Euros, and 26 US Dollars, first create a fixture. The package spec is now:� �
with AUnit; use AUnit;

package Money Tests is

use Test_Results;

type Money Test is new Test_Cases.Test_Case with null record;

procedure Register_Tests (T: in out Money Test);
-- Register routines to be run

function Name (T : Money Test) return Test_String;

-- Provide name identifying the test case

procedure Set_Up (T : in out Money Test);
-- Set up performed before each test routine

-- Test Routines:

procedure Test Simple Add (T : in out Test_Cases.Test_Case’Class);

end Money Tests;
 	
The body becomes:

12 AUnit Cookbook� �
package body Money Tests is

use Assertions;

-- Fixture elements

EU 12, EU 14 : Euro;
US 26 : US Dollar;

-- Preparation performed before each routine

procedure Set_Up (T: in out Money Test) is

begin

EU 12 := 12; EU 14 := 14;
US 26 := 26;
end Set_Up;

procedure Test Simple Add (T : in out Test_Cases.Test_Case’Class) is

X, Y : Some Currency;
begin

Assert
(EU 12 + EU 14 /= US 26,
"US and EU currencies not differentiated");

end Test Simple Add;

-- Register test routines to call

procedure Register_Tests (T: in out Money Test) is

use Test Cases.Registration;

begin

-- Repeat for each test routine:

Register_Routine (T, Test Simple Add’Access, "Test Addition");
end Register_Tests;

-- Identifier of test case

function Name (T: Money Test) return Test_String is

begin

return Format ("Money Tests");
end Name;

end Money Tests;
 	
Once you have the fixture in place, you can write as many test routines as you like. Calls to
Set_Up and Tear_Down bracket the invocation of each test routine.

Once you have several test cases, organize them into a Suite.

You can find a compilable example of fixture set up using AUnit.Test_Fixture in your AU-
nit installation directory: <aunit-root>/share/examples/aunit/test fixture/ or from the AUnit
source distribution aunit-3.8.0w-src/examples/test fixture/.

Chapter 5: Suite 13

5 Suite

5.1 Creating a Test Suite

How do you run several test cases at once?

As soon as you have two tests, you’ll want to run them together. You could run the tests
one at a time yourself, but you would quickly grow tired of that. Instead, AUnit provides an
object, Test_Suite, that runs any number of test cases together.

To create a suite of two test cases and run them together, first create a test suite:� �
with AUnit.Test_Suites;

package My Suite is

function Suite return AUnit.Test_Suites.Access_Test_Suite;

end My Suite;
 	� �
-- Import tests and sub-suites to run

with Test Case 1, Test Case 2;

package body My Suite is

use AUnit.Test_Suites;

-- Statically allocate test suite:

Result : aliased Test_Suite;

-- Statically allocate test cases:

Test 1 : aliased Test Case 1.Test Case;
Test 2 : aliased Test Case 2.Test Case;

function Suite return Access_Test_Suite is

begin

Add_Test (Result’Access, Test Case 1’Access);
Add_Test (Result’Access, Test Case 2’Access);
return Result’Access;

end Suite;
end My Suite;
 	

Instead of statically allocating test cases and suites, you can also use AUnit.Test_

Suites.New_Suite and/or AUnit.Memory.Utils.Gen_Alloc. These routines emulate dynamic
memory management (see Chapter 8 [Using AUnit with Restricted Run-Time Libraries],
page 25). Similarly, if you know that the tests will always be executed for a run-time profile
that supports dynamic memory management, you can allocate these objects directly with the
Ada "new" operator.

The harness is:� �
with My Suite;
with AUnit.Run;

with AUnit.Reporter.Text;

procedure My Tests is

procedure Run is new AUnit.Run.Test_Runner (My Suite.Suite);
Reporter : AUnit.Reporter.Text.Text_Reporter;

begin

Run (Reporter);

end My Tests;
 	

14 AUnit Cookbook

5.2 Composition of Suites

Typically, one will want the flexibility to execute a complete set of tests, or some subset of them.
In order to facilitate this, we can compose both suites and test cases, and provide a harness for
any given suite:� �
-- Composition package:

with AUnit; use AUnit;
package Composite Suite is

function Suite return Test_Suites.Access_Test_Suite;

end Composite Suite;

-- Import tests and suites to run

with This Suite, That Suite;
with AUnit.Tests;

package body Composite Suite is

use Test_Suites;

-- Here we dynamically allocate the suite using the New_Suite function

-- We use the ’Suite’ functions provided in This_Suite and That_Suite

-- We also use Ada 2005 distinguished receiver notation to call Add_Test

function Suite return Access_Test_Suite is

Result : Access_Test_Suite := AUnit.Test_Suites.New_Suite;

begin

Result.Add_Test (This Suite.Suite);
Result.Add_Test (That Suite.Suite);
return Result;

end Suite;
end Composite Suite;
 	
The harness remains the same:� �
with Composite Suite;
with AUnit.Run;

procedure My Tests is

procedure Run is new AUnit.Run.Test_Runner (Composite Suite.Suite);
Reporter : AUnit.Reporter.Text.Text_Reporter;

begin

Run (Reporter);

end My Tests;
 	
As can be seen, this is a very flexible way of composing test cases into execution runs: any
combination of test cases and sub-suites can be collected into a suite.

Chapter 6: Reporting 15

6 Reporting

Test results can be reported using several ’Reporters’. By default, two reporters are available in
AUnit: AUnit.Reporter.Text.Text_Reporter and AUnit.Reporter.XML.XML_Reporter. The
first one is a simple console reporting routine, while the second one outputs the result using an
XML format. These are invoked when the Run routine of an instantiation of AUnit.Run.Test_
Runner is called.

New reporters can be created using children of AUnit.Reporter.Reporter.

The Reporter is selected by specifying it when calling Run:� �
with A_Suite;

with AUnit.Run;

with AUnit.Reporter.Text;

procedure My_Tests is

procedure Run is new AUnit.Run.Test_Runner (A_Suite.Suite);

Reporter : AUnit.Reporter.Text.Text Reporter;
begin

Run (Reporter);
end My_Tests;
 	

The final report is output once all tests have been run, so that they can be grouped depending
on their status (passed or fail). If you need to output the tests as they are run, you should
consider extending the Test_Result type and do some output every time a success or failure is
registered.

6.1 Text output

Here is an example where the test harness runs 4 tests, one reporting an assertion failure, one
reporting an unexpected error (exception):

Total Tests Run: 4

Successful Tests: 2

Test addition

Test subtraction

Failed Assertions: 1

Test addition (failure expected)

Test should fail this assertion, as 5+3 /= 9

at math-test.adb:29

Unexpected Errors: 1

Test addition (error expected)

CONSTRAINT_ERROR

Time: 2.902E-4 seconds

This reporter can optionally use colors (green to report success, red to report errors). Since
not all consoles support it, this is off by default, but you can call Set_Use_ANSI_Colors to
activate support for colors.

16 AUnit Cookbook

6.2 XML output

Following is the same harness run using XML output. The XML format used matches the one
used by CppUnit.

Note that text set in the Assert methods, or as test case names should be compatible with
utf-8 character encoding, or the XML will not be correctly formatted.

<?xml version=’1.0’ encoding=’utf-8’ ?>

<TestRun elapsed=’1.107E-4’>

<Statistics>

<Tests>4</Tests>

<FailuresTotal>2</FailuresTotal>

<Failures>1</Failures>

<Errors>1</Errors>

</Statistics>

<SuccessfulTests>

<Test>

<Name>Test addition</Name>

</Test>

<Test>

<Name>Test subtraction</Name>

</Test>

</SuccessfulTests>

<FailedTests>

<Test>

<Name>Test addition (failure expected)</Name>

<FailureType>Assertion</FailureType>

<Message>Test should fail this assertion, as 5+3 /= 9</Message>

<Location>

<File>math-test.adb</File>

<Line>29</Line>

</Location>

</Test>

<Test>

<Name>Test addition (error expected)</Name>

<FailureType>Error</FailureType>

<Message>CONSTRAINT_ERROR</Message>

</Test>

</FailedTests>

</TestRun>

Chapter 7: Test Organization 17

7 Test Organization

7.1 General considerations

This section will discuss an approach to organizing an AUnit test harness, considering some
possibilities offered by Ada language features.

The general idea behind this approach to test organization is that making the test case a
child of the unit under test gives some useful facilities. The test case gains visibility to the
private part of the unit under test. This offers a more “white box” approach to examining the
state of the unit under test than would, for instance, accessor functions defined in a separate
fixture that is a child of the unit under test. Making the test case a child of the unit under test
also provides a way to make the test case share certain characteristics of the unit under test.
For instance, if the unit under test is generic, then any child package (here the test case) must
be also generic: any instantiation of the parent package will require an instantiation of the test
case in order to accomplish its aims.

Another useful concept is matching the test case type to that of the unit under test:

• When testing a generic package, the test package should also be generic.

• When testing a tagged type, then test routines should be dispatching, and the test case
type for a derived tagged type should be a derivation of the test case type for the parent.

• etc.

Maintaining such similarity of properties between the test case and unit under test can
facilitate the testing of units derived in various ways.

The following sections will concentrate on applying these concepts to the testing of tagged
type hierarchies and to the testing of generic units.

A full example of this kind of test organization is available in the AUnit installation directory:
<AUnit-root>/share/examples/aunit/calculator, or from the AUnit source distribution aunit-
3.8.0w-src/examples/calculator.

7.2 OOP considerations

When testing a hierarchy of tagged types, one will often want to run tests for parent types
against their derivations without rewriting those tests.

We will illustrate some of the possible solutions available in AUnit, using the following simple
example that we want to test:

First we consider a Root package defining the Parent tagged type, with two procedures P1
and P2.� �
package Root is

type Parent is tagged private;

procedure P1 (P : in out Parent);

procedure P2 (P : in out Parent);

private

type Parent is tagged record

Some_Value : Some_Type;

end record;

end Root;
 	
We will also consider a derivation of type Parent:

18 AUnit Cookbook� �
with Root;

package Branch is

type Child is new Root.Parent with private;

procedure P2 (C : in out Child);

procedure P3 (C : in out Child);

private

type Child is new Root.Parent with null record;

end Branch;
 	
Note that Child retains the parent implementation of P1, overrides P2 and adds P3. Its test will
override Test_P2 when we override P2 (not necessary, but certainly possible).

7.2.1 Using AUnit.Test Fixtures

Using Test_Fixture type, we first test Parent using the following test case:� �
with AUnit; use AUnit;

with AUnit.Test_Fixtures; use AUnit.Test_Fixtures;

-- We make this package a child package of Parent so that it can have

-- visibility to its private part

package Root.Tests is

type Parent Access is access all Root.Parent’Class;

-- Reference an object of type Parent’Class in the test object, so

-- that test procedures can have access to it.

type Parent Test is new Test_Fixture with record
Fixture : Parent Access;

end record;

-- This will initialize P.

procedure Set_Up (P : in out Parent Test);

-- Test routines. If derived types are declared in child packages,

-- these can be in the private part.

procedure Test P1 (P : in out Parent Test);
procedure Test P2 (P : in out Parent Test);

end Root.Tests;

package body Root.Tests is

Fixture : aliased Parent;

-- We set Fixture in Parent_Test to an object of type Parent.

procedure Set_Up (P : in out Parent Test) is

begin

P.Fixture := Parent Access (Fixture’Access);
end Set_Up;

-- Test routines: References to the Parent object are made via

-- P.Fixture.all, and are thus dispatching.

procedure Test P1 (P : in out Parent Test) is ...;

procedure Test P2 (P : in out Parent Test) is ...;

end Root.Tests;
 	
The associated test suite will be:

Chapter 7: Test Organization 19� �
with AUnit.Test_Caller;

with Root.Tests;

package body Root Suite is

package Caller is new AUnit.Test_Caller with (Root.Tests.Parent Test);

function Suite return AUnit.Test_Suites.Access_Test_Suite is

Ret : Access_Test_Suite := AUnit.Test_Suites.New_Suite;

begin

AUnit.Test_Suites.Add_Test

(Ret, Caller.Create ("Test Parent : P1", Root.Tests.Test P1’Access));
AUnit.Test_Suites.Add_Test

(Ret, Caller.Create ("Test Parent : P2", Root.Tests.Test P2’Access));
return Ret;

end Suite;

end Root Suite;
 	
Now we define the test suite for the Child type. To do this, we inherit a test fixture from
Parent_Test, overriding the Set_Up procedure to initialize Fixture with a Child object. We
also override Test_P2 to adapt it to the new implementation. We define a new Test_P3 to test
P3. And we inherit Test_P1, since P1 is unchanged.� �
with Root.Tests; use Root.Tests;
with AUnit; use AUnit;

with AUnit.Test_Fixtures; use AUnit.Test_Fixtures;

package Branch.Tests is

type Child Test is new Parent Test with null record;

procedure Set_Up (C : in out Child Test);

-- Test routines:

-- Test_P2 is overridden

procedure Test P2 (C : in out Child Test);
-- Test_P3 is new

procedure Test P3 (C : in out Child Test);

end Branch.Tests;

package body Branch.Tests is

use Assertions;

Fixture : Child;
-- This could also be a field of Child_Test

procedure Set_Up (C : in out Child Test) is

begin

-- The Fixture for this test will now be a Child

C.Fixture := Parent Access (Fixture’Access);
end Set_Up;

-- Test routines:

procedure Test P2 (C : in out Child Test) is ...;

procedure Test P3 (C : in out Child Test) is ...;

end Branch.Tests;
 	
The suite for Branch.Tests will now be:

20 AUnit Cookbook� �
with AUnit.Test_Caller;

with Branch.Tests;

package body Branch Suite is

package Caller is new AUnit.Test_Caller with (Branch.Tests.Parent Test);

-- In this suite, we use Ada 2005 distinguished receiver notation to

-- simplify the code.

function Suite return Access_Test_Suite is

Ret : Access_Test_Suite := AUnit.Test_Suites.New_Suite;

begin

-- We use the inherited Test_P1. Note that it is

-- Branch.Tests.Set_Up that will be called, and so Test_P1 will be run

-- against an object of type Child

Ret.Add_Test
(Caller.Create ("Test Child : P1", Branch.Tests.Test P1’Access));

-- We use the overridden Test_P2

Ret.Add_Test
(Caller.Create ("Test Child : P2", Branch.Tests.Test P2’Access));

-- We use the new Test_P2

Ret.Add_Test
(Caller.Create ("Test Child : P3", Branch.Tests.Test P3’Access));

return Ret;
end Suite;

end Branch Suite;
 	
7.2.2 Using AUnit.Test Cases

Using an AUnit.Test_Cases.Test_Case derived type, we obtain the following code for testing
Parent:� �
with AUnit; use AUnit;

with AUnit.Test_Cases;

package Root.Tests is

type Parent Access is access all Root.Parent’Class;

type Parent Test is new AUnit.Test_Cases.Test_Case with record
Fixture : Parent Access;

end record;

function Name (P : Parent Test) return Message_String;

procedure Register_Tests (P : in out Parent Test);

procedure Set_Up_Case (P : in out Parent Test);

-- Test routines. If derived types are declared in child packages,

-- these can be in the private part.

procedure Test P1 (P : in out Parent Test);
procedure Test P2 (P : in out Parent Test);

end Root.Tests;
 	
The body of the test case will follow the usual pattern, declaring one or more objects of type
Parent, and executing statements in the test routines against them. However, in order to
support dispatching to overriding routines of derived test cases, we need to introduce class-
wide wrapper routines for each primitive test routine of the parent type that we anticipate
may be overridden. Instead of registering the parent’s overridable primitive operations directly
using Register_Routine, we register the wrapper using Register_Wrapper. This latter routine
is exported by instantiating AUnit.Test_Cases.Specific_Test_Case_Registration with the
actual parameter being the parent test case type.

Chapter 7: Test Organization 21� �
with AUnit.Assertions; use AUnit.Assertions

package body Root.Tests is

-- Declare class-wide wrapper routines for any test routines that will be

-- overridden:

procedure Test P1 Wrapper (P : in out Parent Test’Class);
procedure Test P2 Wrapper (P : in out Parent Test’Class);

function Name (P : Parent Test) return Message_String is ...;

-- Set the fixture in P

Fixture : aliased Parent;
procedure Set_Up_Case (P : in out Parent Test) is

begin

P.Fixture := Parent Access (Fixture’Access);
end Set_Up_Case;

-- Register Wrappers:

procedure Register_Tests (P : in out Parent Test) is

package Register Specific is

new Test_Cases.Specific_Test_Case_Registration (Parent Test);

use Register_Specific;

begin

Register_Wrapper (P, Test P1 Wrapper’Access, "Test P1");
Register_Wrapper (P, Test P2 Wrapper’Access, "Test P2");

end Register_Tests;

-- Test routines:

procedure Test P1 (P : in out Parent_Test) is ...;

procedure Test P2 (C : in out Parent_Test) is ...;

-- Wrapper routines. These dispatch to the corresponding primitive

-- test routines of the specific types.

procedure Test P1 Wrapper (P : in out Parent Test’Class) is

begin

Test P1 (P);
end Test P1 Wrapper;

procedure Test P2 Wrapper (P : in out Parent Test’Class) is

begin

Test P2 (P);
end Test P2 Wrapper;

end Root.Tests;
 	

The code for testing the Child type will now be:

22 AUnit Cookbook� �
with Parent Tests; use Parent Tests;
with AUnit; use AUnit;

package Branch.Tests is

type Child Test is new Parent Test with private;

function Name (C : Child Test) return Message_String;

procedure Register_Tests (C : in out Child Test);

-- Override Set_Up_Case so that the fixture changes.

procedure Set_Up_Case (C : in out Child Test);

-- Test routines:

procedure Test P2 (C : in out Child Test);
procedure Test P3 (C : in out Child Test);

private

type Child Test is new Parent Test with null record;
end Branch.Tests;

with AUnit.Assertions; use AUnit.Assertions;

package body Branch.Tests is

-- Declare wrapper for Test_P3:

procedure Test P3 Wrapper (C : in out Child Test’Class);

function Name (C : Child Test) return Test_String is ...;

procedure Register_Tests (C : in out Child Test) is

package Register Specific is

new Test_Cases.Specific_Test_Case_Registration (Child Test);
use Register Specific;

begin

-- Register parent tests for P1 and P2:

Parent Tests.Register_Tests (Parent Test (C));

-- Repeat for each new test routine (Test_P3 in this case):

Register Wrapper (C, Test P3 Wrapper’Access, "Test P3");
end Register_Tests;

-- Set the fixture in P

Fixture : aliased Child;
procedure Set_Up_Case (C : in out Child Test) is

begin

C.Fixture := Parent Access (Fixture’Access);
end Set_Up_Case;

-- Test routines:

procedure Test P2 (C : in out Child Test) is ...;

procedure Test P3 (C : in out Child Test) is ...;

-- Wrapper for new routine:

procedure Test P3 Wrapper (C : in out Child Test’Class) is

begin

Test P3 (C);
end Test P3 Wrapper;

end Branch.Tests;
 	
Note that inherited and overridden tests do not need to be explicitly re-registered in derived
test cases - one just calls the parent version of Register_Tests. If the application tagged type
hierarchy is organized into parent and child units, one could also organize the test cases into a
hierarchy that reflects that of the units under test.

Chapter 7: Test Organization 23

7.3 Testing generic units

When testing generic units, one would like to apply the same generic tests to all instantiations
in an application. A simple approach is to make the test case a child package of the unit under
test (which then must also be generic).

For instance, suppose the generic unit under test is a package (it could be a subprogram, and
the same principle would apply):� �
generic

-- Formal parameter list

package Template is

-- Declarations

end Template;
 	
The corresponding test case would be:� �
with AUnit; use AUnit;

with AUnit.Test_Fixtures;

generic

package Template.Gen Tests is

type Template Test is new AUnit.Test_Fixtures.Test_Fixture with ...;

-- Declare test routines

end Template.Gen Tests;
 	
The body will follow the usual patterns with the fixture based on the parent package

Template. Note that due to an Ada AI, accesses to test routines, along with the test rou-
tine specifications, must be defined in the package specification rather than in its body.

Instances of Template will define automatically the Tests child package that can be directly
instantiated as follow:� �
with Template.Gen_Test;

with Instance_Of_Template;

package Instance_Of_Template.Tests is new Instance_Of_Template.Gen_Test;
 	
The instantiated test case objects are added to a suite in the usual manner.

Chapter 8: Using AUnit with Restricted Run-Time Libraries 25

8 Using AUnit with Restricted Run-Time Libraries

AUnit 3 - like AUnit 2 - is designed so that it can be used in environments with restricted Ada
run-time libraries, such as ZFP and the cert run-time profile on Wind River Systems’ VxWorks
653. The patterns given in this document for writing tests, suites and harnesses are not the only
patterns that can be used with AUnit, but they are compatible with the restricted run-time
libraries provided with GNAT Pro.

In general, dynamic allocation and deallocation must be used carefully in test code. For
the cert profile on VxWorks 653, all dynamic allocation must be done prior to setting the
application partition into “normal” mode. Deallocation is prohibited in this profile. For the
default ZFP profile, dynamic memory management is not provided as part of the run-time, as it
is not available on a bare board environment, and should not be used unless you have provided
implementations as described in the GNAT Pro High Integrity User Guide.

Starting with AUnit 3, a simple memory management mechanism has been included in the
framework, using a kind of storage pool. This memory management mechanism uses a static
array allocated at startup, and simulates dynamic allocation afterwards by allocating parts of
this array upon request. Deallocation is not permitted.

By default, the allocated array is a 100 KB array. This value can be changed by modifying
its size in the file: ‘aunit-3.8.0w-src/aunit/framework/staticmemory/aunit-memory.adb’

To allocate a new object, you use AUnit.Memory.Utils.Gen_Alloc.

Additional restrictions relevant to the default ZFP profile include:

1. Normally the ZFP profile requires a user-defined __gnat_last_chance_handler routine to
handle raised exceptions. However, AUnit now provides a mechanism to simulate exception
propagation using gcc builtin setjmp/longjmp mechanism. This mechanism defines the __

gnat_last_chance_handler routine, so it should not be redefined elsewhere. In order to be
compatible with this restriction, the user-defined last chance handler routine can be defined
as a "weak" symbol; this way, it will still be linked into the standalone executable, but
will be replaced by the AUnit implementation when linked with the harness. The pragma
Weak External can be used for that, e.g.:

pragma Weak_External (Last_Chance_Handler);

2. AUnit requires GNAT.IO provided in ‘g-io.ad?’ in the full or cert profile run-time library
sources (or as implemented by the user). Since this is a run-time library unit it must be
compiled with the gnatmake “-a” switch.

3. The AUnit framework has been modified so that no call to the secondary stack is performed,
nor any call to memcpy or memset. However, if the unit under test, or the tests themselves
require use of those routines, then the application or test framework must define those
symbols and provide the requisite implementations.

4. The timed parameter of the Harness Run routine has no effect when used with the ZFP
profile, and on profiles not supporting Ada.Calendar.

Chapter 9: Installation and Use 27

9 Installation and Use

AUnit 3 contains support for limited run-times such as zero-foot-print (ZFP) and certified run-
time (cert). It can now be installed simultaneously for several targets and run-times.

9.1 Note on gprbuild

In order to compile, install and use AUnit, you need gprbuild and gprinstall version 2.2.0 or
above.

9.2 Support for other platforms/run-times

AUnit should be built and installed separately for each target and run-time it is meant to be used
with. The necessary customizations are performed at AUnit build time, so once the framework
is installed, it is always referenced simply by adding the line

with "aunit";

to your project.

9.3 Installing AUnit

Normally AUnit comes preinstalled and ready-to-use for all runtimes in your GNAT distribution.
The following instructions are for rebuilding it from sources for the custom configuration that
the user may have.

• Extract the archive:
$ gunzip -dc aunit-3.8.0w-src.tgz | tar xf -

• To build AUnit for a full Ada run-time:
$ cd aunit-3.8.0w-src

$ make

To build AUnit for a zfp run-time targeting powerpc-elf platform:
$ cd aunit-3.8.0w-src

$ make TARGET=powerpc-elf RTS=zfp

To build AUnit for a reconfigurable runtime zfp-leon3 targeting leon3-elf platform:
$ cd aunit-3.8.0w-src

$ make TARGET=leon3-elf RTS=zfp RTS_CONF="--RTS=zfp-leon3"

Once the above build procedure has been performed for the desired platform, you can install
AUnit:

$ make install INSTALL=<install-root>

We recommend that you install AUnit into the standard location used by gprbuild to find
the libraries for a given configuration. For example for the case above (runtime zfp-leon3
targeting leon3-elf), the default location is <gnat-root>/leon3-elf/zfp-leon3. If the runtime
is located in a custom directory and specified by the full path, using this exact path also as
<install root> is a sensible choice.

If INSTALL is not specified, then AUnit will use the root directory where gprbuild is
installed.

• Specific installation:

The AUnit makefile supports some specific options, activated using environment variables.
The following options are defined:

• INSTALL: defines the AUnit base installation directory, set to gprbuild’s base instal-
lation directory as found in the PATH.

• TARGET: defines the gnat tools prefix to use. For example, to compile AUnit for
powerpc VxWorks, TARGET should be set to powerpc-wrs-vxworks. If not set, the
native compiler will be used.

28 AUnit Cookbook

• RTS: defines both the run-time used to compile AUnit and the value given to the AUnit
project as RUNTIME scenario variable.

• RTS CONF: defines the gprbuild Runtime config flag. The value is set to "–
RTS=$(RTS)" by default. Can be used when compiling AUnit for a configurable
run-time.

• To test AUnit:

The AUnit test suite is in the test subdirectory of the source package.
$ cd test

$ make

The test suite’s makefile supports the following variables:

• RTS

• TARGET

9.4 Installed files

The AUnit library is installed in the specified directory (<aunit-root> identifies the root instal-
lation directory as specified during the installation procedures above):

• the aunit.gpr project is installed in <aunit-root>/lib/gnat

• the AUnit source files are installed in <aunit-root>/include/aunit

• the AUnit library files are installed in <aunit-root>/lib/aunit

• the AUnit documentation is installed in <aunit-root>/share/doc/aunit

• the AUnit examples are installed in <aunit-root>/share/examples/aunit

Chapter 10: GPS Support 29

10 GPS Support

GPS IDE relies on gnattest tool that creates unit-test skeletons as well as a test driver infras-
tructure (harness). Harness can be generated for project hierarchy, single project or a package.
Generation process can be launched from Tools -> GNATtest menu or from contextual menu.

	Introduction
	What's new in AUnit 3
	Examples
	Note about limited run-times
	Thanks

	Overview
	Test Case
	AUnit.Simple_Test_Cases
	AUnit.Test_Cases
	AUnit.Test_Caller

	Fixture
	Suite
	Creating a Test Suite
	Composition of Suites

	Reporting
	Text output
	XML output

	Test Organization
	General considerations
	OOP considerations
	Using AUnit.Test_Fixtures
	Using AUnit.Test_Cases

	Testing generic units

	Using AUnit with Restricted Run-Time Libraries
	Installation and Use
	Note on gprbuild
	Support for other platforms/run-times
	Installing AUnit
	Installed files

	GPS Support

