
AUnit Cookbook
AUnit - version 2.01

Document revision level $Revision: 1.15 $
Date: 5 June 2007

AdaCore

http://www.adacore.com

http://www.adacore.com

Copyright c© 2000-2006, AdaCore

This document may be copied, in whole or in part, in any form or by any means, as is or with
alterations, provided that (1) alterations are clearly marked as alterations and (2) this copyright
notice is included unmodified in any copy.

i

Table of Contents

1 Introduction . 1

2 Overview . 3

3 Simple Test Case . 5

4 Fixture . 7

5 Suite . 9

6 Composition of Suites . 11

7 Support for OOP. 13

8 Support for Generics . 17

9 Reporting . 19

10 Migrating Tests from AUnit 1 to AUnit 2 21

11 Using AUnit with Restricted Run-Time Libraries 23

12 Installation and Use . 25
12.1 Installing AUnit on UNIX systems . 25
12.2 Installing AUnit on Windows systems . 25
12.3 Installed files . 26

13 GPS Support . 27

ii AUnit Cookbook

Chapter 1: Introduction 1

1 Introduction

This is a short guide for using the AUnit test framework. AUnit is an adaptation of the Java
JUnit (Kent Beck, Erich Gamma) unit test framework for Ada code. AUnit 2 differs somewhat
from the original AUnit 1 in that it is compatible with restricted run-time libraries provided with
GNAT Pro for high integrity applications. It also provides better support for testing of OOP
applications by allowing overriding and inheritance of test routines. AUnit 1 only supported
inheritance.

AUnit allows a great deal of flexibility as to the structure of test cases, suites and harnesses.
The templates and examples given in this document illustrate how to use AUnit while staying
within the constraints of the GNAT Pro restricted and Zero Foot Print (ZFP) run-time libraries.
Therefore, they avoid the use of dynamic allocation and some other features that would be
outside of the profiles corresponding to these libraries. Tests targeted to the full Ada run-time
library need not comply with these constraints.

This document is adapted from the JUnit Cookbook document contained in the JUnit release
package.

Special thanks to Francois Brun of Thales Avionics for his ideas about support for OOP
testing.

2 AUnit Cookbook

Chapter 2: Overview 3

2 Overview

How do you write testing code?
The simplest way is as an expression in a debugger. You can change debug expressions

without recompiling, and you can wait to decide what to write until you have seen the running
objects. You can also write test expressions as statements that print to the standard output
stream. Both styles of tests are limited because they require human judgment to analyze their
results. Also, they don’t compose nicely - you can only execute one debug expression at a time
and a program with too many print statements causes the dreaded "Scroll Blindness".

AUnit tests do not require human judgment to interpret, and it is easy to run many of them
at the same time. When you need to test something, here is what you do:
1. Instantiate AUnit_Framework.Framework to parameterize the test framework. Since re-

stricted run-time profiles do not support dynamic memory management without customiza-
tion, tables of information used for reporting test results and for manipulating tests must be
statically sized. In this document, we will call this instantiation AUnit in both code samples
and text. When referring to this user-instantiated package, it will appear in boldface, as
will all other user-written code.

2. Declare a package for a test case - a set of logically related test routines.
3. Derive a test case type from AUnit.Test_Cases.Test_Case in the package.
4. The new derived type must provide implementations of Register_Tests and Name.
5. Write each test routine (see below) and register it with a statement in routine Register_

Tests, of the form:� �
Register_Routine (T, Test_Name’Access, "Description of test routine");
 	
Register_Routine is exported by AUnit.Test_Cases.Registration.

6. When you want to check a value, use:� �
AUnit.Test_Cases.Assertions.Assert (Boolean Expression, String Description);
 	

or:� �
if not AUnit.Test_Cases.Assertions.Assert (Boolean Expression, String Description) then

return;

end if;
 	
Note that in AUnit 2 the procedural form of Assert will have different behavior depending
on whether the underlying Ada run-time library supports exception handling. If exception
handling is supported, a failed assertion will cause the execution of the calling test routine
to be abandoned. If exception handling is not supported, a failed assertion will not do this:
the calling test routine will continue executing. This behavior is selected by the SUPPORT_
EXCEPTION variable in the makefile file, during AUnit compilation. The first behavior is
identical to that of AUnit 1 for backward compatibility. The functional form of Assert
always continues on a failed assertion, and provides you with a choice of behaviors. This
form allows writing test routines that are fully portable across run-time profiles.

7. Create a suite function inside a package to gather together test cases and sub-suites. Test
cases and suites must be statically allocated if using the ZFP profile without custom dynamic
memory management, or the “cert” run-time profile.

8. At any level at which you wish to run tests, create a harness by instantiating procedure
AUnit.Test_Runner or function AUnit.Test_Runner_With_Status with the top-level suite

4 AUnit Cookbook

function to be executed. This instantiation provides a routine that executes all of the tests
in the suite. We will call this user-instantiated routine Run in the text for backward
compatibility to tests developed for AUnit 1. Note that only one instance of Run can
execute at a time. This is a tradeoff made to reduce the stack requirement of the framework
by allocating test result reporting data structures statically. AUnit.Test_Runner must be
instantiated at the library level.

9. Build the code that calls the harness Run routine using gnatmake. The GNAT project file
aunit.gpr contains all necessary switches, and should be imported into your root project
file.

The first step when using AUnit is to instantiate the framework in order to size various elements
used for manipulating tests and reporting the results of a run. Unlike AUnit 1, AUnit 2 does
not use any dynamic allocation so that it can be used with GNAT run-time libraries such as
ZFP and cert that either do not support the use of allocators by default, or place restrictions
on where they can be used. The following code fragment is a typical instantiation. User-specific
text is in boldface.� �
with AUnit_Framework.Framework;

package AUnit is new AUnit_Framework.Framework

(Max_Exceptions_Per_Harness => 5,
Max_Failures_Per_Harness => 20,
Max_Routines_Per_Test_Case => 50,
Max_Test_Cases_Per_Suite => 50,
Message_String_Pool_Size => 4096;
 	

The term “run” in this discussion means the execution of a call to the Run routine that is an
instantiation of either AUnit.Test_Runner or AUnit.Test_Runner_With_Result.

The formal parameters of AUnit_Framework.Framework are:
• Max Exceptions Per Harness: the maximum number of unhandled exceptions that can be

reported in test routines for a given run. If this value is exceeded, a warning is displayed
and the exception is reported immediately rather than as part of the summary reporting.

• Max Failures Per Harness: the maximum number of failed assertions that can be reported
in the run.. If this value is exceeded, a warning is displayed and the exception is reported
immediately rather than as part of the summary reporting.

• Max Routines Per Test Case: the maximum number of routines that can be part of any
test case. If this limit is exceeded, a warning is displayed and the routine in question is not
added to the test case for execution.

• Max Test Cases Per Suite: the maximum number of test cases or subsuites that can be
put into a suite. If this limit is exceeded, a warning is displayed and the test case is not
added to the suite for execution.

• Message String Pool Size: amount of space in bytes to be statically allocated for strings
used in the AUnit report. Default value is 10 000.

Chapter 3: Simple Test Case 5

3 Simple Test Case

To test that the sum of two Moneys with the same currency contains a value which is the sum
of the values of the two Moneys, the test routine would look like:� �
procedure Test_Simple_Add (T : in out Money_Test) is

X, Y: Some_Currency;

begin

X := 12; Y := 14;

Assert (X + Y = 26, "Addition is incorrect");

end Test_Simple_Add;
 	

The package spec looks as follows. The only modification was to remove support for a test fixture
(next section), and to provide a name for the unit. Changes to "boilerplate code" are in bold
(remember that AUnit here is the name of your instantiation of AUnit_Framework.Framework).� �
with AUnit; use AUnit;

package Money Tests is

use Test_Results;

type Money Test is new Test_Cases.Test_Case with null record;

procedure Register_Tests (T: in out Money Test);
-- Register routines to be run

function Name (T: Money Test) return Test_String;

-- Provide name identifying the test case

-- Test Routines:

procedure Test Simple Add (T : in out Test_Cases.Test_Case’Class);

end Money Tests;
 	

The package body is:

6 AUnit Cookbook� �
package body Money Tests is

use Assertions;

procedure Test Simple Add (T : in out Test_Cases.Test_Case’Class) is

X, Y : Some Currency;
begin

X := 12; Y := 14;
Assert (X + Y = 26, "Addition is incorrect");

end Test Simple Add;

-- Register test routines to call

procedure Register_Tests (T: in out Money Test) is

use Test_Cases.Registration;

begin

-- Repeat for each test routine:

Register_Routine (T, Test Simple Add’Access, "Test Addition");
end Register_Tests;

-- Identifier of test case

function Name (T: Money Test) return Test_String is

begin

return Format ("Money Tests");
end Name;

end Money Tests;
 	
The corresponding harness code, which imports user suite package Money Suite (see below) is:� �
with Money Suite;
with AUnit;
procedure Run is new AUnit.Test_Runner (Money Suite.Suite);

with Run;
-- If targeting the ZFP run-time library, uncomment:

-- with Last_Chance_Handler, Dummy_SS_Get;

procedure My Tests is

begin

Run;
end My Tests;
 	

Chapter 4: Fixture 7

4 Fixture

Tests need to run against the background of a set of known entities. This set is called a test
fixture. When you are writing tests you will often find that you spend more time writing code
to set up the fixture than you do in actually testing values.

You can make writing fixture code easier by sharing it. Often you will be able to use the same
fixture for several different tests. Each case will send slightly different messages or parameters
to the fixture and will check for different results.

When you have a common fixture, here is what you do:

1. Create a package as in the previous section.

2. Declare variables or components for elements of the fixture either as part of the test case
type or in the package body.

3. Override Set_Up_Case to initialize the fixture for all test routines.

4. Override Set_Up to initialize the variables or components before the execution of each
routine.

5. Override Tear_Down to release any resources you allocated in Set_Up - to be executed after
each test routine.

6. Override Tear_Down_Case to release any permanent resources you allocated in Set_Up_Case
- to be executed after all test routines.

For example, to write several test cases that want to work with different combinations of 12
Euros, 14 Euros, and 26 US Dollars, first create a fixture. The package spec is now:� �
with AUnit; use AUnit;

package Money Tests is

use Test_Results;

type Money Test is new Test_Cases.Test_Case with null record;

procedure Register_Tests (T: in out Money Test);
-- Register routines to be run

function Name (T : Money Test) return Test_String;

-- Provide name identifying the test case

procedure Set_Up (T : in out Money Test);
-- Set up performed before each test routine

-- Test Routines:

procedure Test Simple Add (T : in out Test_Cases.Test_Case’Class);

end Money Tests;
 	
The body becomes:

8 AUnit Cookbook� �
package body Money Tests is

use Assertions;

-- Fixture elements

EU 12, EU 14 : Euro;
US 26 : US Dollar;

-- Preparation performed before each routine

procedure Set_Up (T: in out Money Test) is

begin

EU 12 := 12; EU 14 := 14;
US 26 := 26;
end Set_Up;

procedure Test Simple Add (T : in out Test_Cases.Test_Case’Class) is

X, Y : Some Currency;
begin

Assert
(EU 12 + EU 14 /= US 26,
"US and EU currencies not differentiated");

end Test Simple Add;

-- Register test routines to call

procedure Register_Tests (T: in out Money Test) is

use Test Cases.Registration;

begin

-- Repeat for each test routine:

Register_Routine (T, Test Simple Add’Access, "Test Addition");
end Register_Tests;

-- Identifier of test case

function Name (T: Money Test) return Test_String is

begin

return Format ("Money Tests");
end Name;

end Money Tests;
 	
Once you have the fixture in place, you can write as many test routines as you like. Calls to
Set_Up and Tear_Down bracket the invocation of each test routine.

Once you have several test cases, organize them into a Suite.

Chapter 5: Suite 9

5 Suite

How do you run several test cases at once?
As soon as you have two tests, you’ll want to run them together. You could run the tests

one at a time yourself, but you would quickly grow tired of that. Instead, AUnit provides an
object, Test_Suite, that runs any number of test cases together.

For test routines that use the same fixture (i.e. those declared in the same package), the
Register_Routine procedure is used to collect them into the single test case.
To create a suite of two test cases and run them together, first create a test suite (again, AUnit
designates the user instantiation of AUnit_Framework.Framework):� �
with AUnit; use AUnit;
package My Suite is

function Suite return Test_Suites.Access_Test_Suite;

end My Suite;

-- Import tests and sub-suites to run

with Test Case 1, Test Case 2;

package body My Suite is

use Test_Suites;

-- Statically allocate test suite:

Result : aliased Test_Suite;

-- Statically allocate test cases:

Test 1 : aliased Test Case 1.Test Case;
Test 2 : aliased Test Case 2.Test Case;

function Suite return Acces_Test_Suite is

begin

Add_Test (Result’Access, Test Case 1’Access);
Add_Test (Result’Access, Test Case 2’Access);
return Result’Access;

end Suite;
end My Suite;
 	

The harness and test procedure are:� �
with My Suite;
with AUnit;
procedure Run is new AUnit.Test_Runner (My Suite.Suite);

with Run;
-- If targeting the ZFP run-time library, uncomment:

-- with Last_Chance_Handler, Dummy_SS_Get;

procedure My Tests is

begin

Run;
end My Tests;
 	

10 AUnit Cookbook

Chapter 6: Composition of Suites 11

6 Composition of Suites

Typically, one will want the flexibility to execute a complete set of tests, or some subset of them.
In order to facilitate this, we can compose both suites and test cases, and provide a harness for
any given suite:� �
-- Composition package:

with AUnit; use AUnit;
package Composite Suite is

function Suite return Test_Suites.Access_Test_Suite;

end Composite Suite;

-- Import tests and suites to run

with This Suite, That Suite;

package body Composite Suite is

use Test_Suites;

-- Statically allocate test suite. Note that the suites to compose

-- have already been allocated in their own packages.

Result : aliased Test_Suite;

function Suite return Access_Test_Suite is

begin

Add_Test (Result’Access, This Suite.Suite’Access);
Add_Test (Result’Access, That Suite.Suite’Access);
return Result’Access;

end Suite;
end Composite Suite;
 	

The harness remains the same:� �
with Composite Suite;
with AUnit;
procedure Run is new AUnit.Test_Runner (Composite Suite.Suite);

with Run;
-- If targeting the ZFP run-time library, uncomment:

-- with Last_Chance_Handler, Dummy_SS_Get;

procedure Composite Tests is

begin

Run;
end Composite Tests;
 	

As can be seen, this is a very flexible way of composing test cases into execution runs: any
combination of test cases and sub-suites can be collected into a suite.

12 AUnit Cookbook

Chapter 7: Support for OOP 13

7 Support for OOP

When testing a hierarchy of tagged types, one will often want to run tests for parent types against
their derivations without rewriting those tests. The most straightforward way to accomplish this
is to derive the test cases for the derived types from those for the parent type.

Suppose we have a parent type defined in a package:� �
package Root is

type Parent is tagged private;

procedure P1 (P : in out Parent);

procedure P2 (P : in out Parent);

private

type Parent is tagged null record;

end Root;
 	
and a corresponding test case:� �
with AUnit; use AUnit;
package Parent Tests is

use Test_Results;

type Parent Test is new Test_Cases.Test_Case with private;

function Name (P : Parent Test) return Test_String;

procedure Register_Tests (P : in out Parent Test);

-- Test routines. If derived types are declared in child packages,

-- these can be in the private part.

procedure Test P1 (P : in out Test_Cases.Test_Case’Class);

procedure Test P2 (P : in out Test_Cases.Test_Case’Class);

private

type Parent Test is new Test_Cases.Test_Case with null record;
end Parent Tests;
 	

The body of the test case will follow the usual pattern, declaring one or more objects of type
Parent, and executing statements in the test routines against them. However, in order to
support dispatching to overriding routines of derived test cases, we need to introduce class-
wide wrapper routines for each primitive test routine of the parent type that we anticipate
may be overridden. Instead of registering the parent’s overridable primitive operations directly
using Register_Routine, we register the wrapper using Register_Wrapper. This latter routine
is exported by instantiating AUnit.Test_Cases.Specific_Test_Case_Registration with the
actual parameter being the parent test case type.

14 AUnit Cookbook� �
with Root; use Root;
package body Parent Tests is

use Assertions;

Fixture : Parent;
-- This could also be a field of Parent_Test

-- Declare class-wide wrapper routines for any test routines that will be

-- overridden:

procedure Test P1 Wrapper (P : in out Parent Test’Class);
procedure Test P2 Wrapper (P : in out Parent Test’Class);

function Name (C : Parent Test) return Test_String is ...;

-- Register Wrappers:

procedure Register_Tests (P : in out Parent Test) is

package Register Specific is

new Test_Cases.Specific_Test_Case_Registration (Parent Test);

use Register_Specific;

begin

Register_Wrapper (P, Test P1 Wrapper’Access, "Test P1");
Register_Wrapper (P, Test P2 Wrapper’Access, "Test P2");

end Register_Tests;

-- Test routines:

procedure Test P1 (P : in out Test_Cases.Test_Case’Class) is ...;

procedure Test P2 (C : in out Test_Cases.Test_Case’Class) is ...;

-- Wrapper routines. These dispatch to the corresponding primitive

-- test routines of the specific types.

procedure Test P1 Wrapper (P : in out Parent Test’Class) is

begin

Test P1 (P);
end Test P1 Wrapper;

procedure Test P2 Wrapper (P : in out Parent Test’Class) is

begin

Test P2 (P);
end Test P2 Wrapper;

end Parent Tests;
 	
Now consider a derivation of type Parent:� �

with Root;

package Branch is

type Child is new Root.Parent with private;

procedure P2 (C : in out Child);

procedure P3 (C : in out Child);

private

type Child is new Root.Parent with null record;

end Branch;
 	
Note that Child retains the parent implementation of P1, overrides P2 and adds P3. Its test
case looks like the following, assuming that we will override Test_P2 when we override P2 (not
necessary, but certainly possible):

Chapter 7: Support for OOP 15� �
with Parent Tests; use Parent Tests;
with AUnit; use AUnit;
package Child Tests is

use Test_Results;

type Child Test is new Parent Test with private;

function Name (C : Child Test) return Test_String;

procedure Register_Tests (C : in out Child Test);

-- Test routines:

procedure Test P2 (C : in out Test_Cases.Test_Case’Class);

procedure Test P3 (C : in out Test_Cases.Test_Case’Class);

private

type Child Test is new Parent Test with null record;
end Child Tests;

with Branch; use Branch;
package body Child Tests is

use Assertions;

Fixture : Child;
-- This could also be a field of Child_Test

-- Declare wrapper for Test_P3:

procedure Test P3 Wrapper (C : in out Child Test’Class);

function Name (C : Child Test) return Test_String is ...;

procedure Register_Tests (C : in out Child Test) is

package Register Specific is

new Test_Cases.Specific_Test_Case_Registration (Child Test);
use Register Specific;

begin

-- Register parent tests for P1 and P2:

Parent Tests.Register_Tests (Parent Test (C));

-- Repeat for each new test routine (Test_P3 in this case):

Register Wrapper (C, Test P3 Wrapper’Access, "Test P3");
end Register_Tests;

-- Test routines:

procedure Test P2 (C : in out Test_Cases.Test_Case’Class) is ...;

procedure Test P3 (C : in out Test_Cases.Test_Case’Class) is ...;

-- Wrapper for new routine:

procedure Test P3 Wrapper (C : in out Child Test’Class) is

begin

Test P3 (C);
end Test P3 Wrapper;

end Child Tests;
 	
Note that inherited and overridden tests do not need to be explicitly re-registered in derived
test cases - one just calls the parent version of Register_Tests. If the application tagged type
hierarchy is organized into parent and child units, one could also organize the test cases into a
hierarchy that reflects that of the units under test.

16 AUnit Cookbook

Chapter 8: Support for Generics 17

8 Support for Generics

When testing generic units, one would like to apply the same generic tests to all instantiations
in an application. A simple approach is to make the generic unit under test a formal parameter
to a generic test case.

For instance, suppose the generic unit to test is a package (though it could be a subprogram,
and the same principle would apply):� �
generic

-- Formal parameter list

package Template is

-- Declarations

end Template;
 	
The corresponding test case would be:� �
with AUnit; use AUnit;
with Template;
generic

with package Instance is new Template (<>);

package Template Tests is

use Test_Results;

type Template Test is new Test_Cases.Test_Case with private;

function Name (T : Template Test) return Test_String;

procedure Register_Tests (T : in out Template Test);

-- Declare test routines

private

type Template Test is new Test_Cases.Test_Case with ...;

-- Specifications of test routines, and declarations of access values

-- to them for use in Register_Routine:

end Template Tests;
 	
The body will follow the usual patterns with the fixture being based on the formal package

Instance. Note that due to a recent AI, accesses to test routines, along with the test routine
specifications, must be defined in the package specification rather than in its body.

Instances of Template will have associated instances of Template_Tests. The instances
under test can be instantiated as is convenient, at the library level or within a helper package.
Likewise for the test case instances. The instantiated test case objects are added to a suite in
the usual manner.

18 AUnit Cookbook

Chapter 9: Reporting 19

9 Reporting

Currently test results are reported using a simple console reporting routine that is invoked when
the Run routine of an instantiation of AUnit.Test_Runner is called.

Here is an example where the test program calls three different Run routines (because they
need to be invoked in the contexts of distinct tasks):

20 AUnit Cookbook� �

Total Tests Run: 7

Successful Tests: 7

Apex_Blackboards_Init : creation routines

Apex_Buffers_Init : creation routines

Apex_Events_Init : creation routines

Apex_Processes_Init : creation routines

Apex_Queuing_Ports_Init : creation routines

Apex_Sampling_Ports_Init : creation routines

Apex_Semaphores_Init : creation routines

Failed Assertions: 0

Total Tests Run: 4

Successful Tests: 4

Apex_Partition : Partition status

Apex_Processes : General routines for ARINC processes

Apex_Processes : Routines that manipulate process priority

Apex_Processes : Routines that stop and resume processes

Failed Assertions: 0

Total Tests Run: 46

Successful Tests: 44

Apex_Semaphores : Routines that handle semaphores

Apex_Buffers : Routines that handle buffers

Apex_Blackboards : Blackboard information exchange

Apex_Queuing_Ports : Routines using queuing ports

Apex_Sampling_Ports : Routines using sampling ports

Exception handling : Local exception handling in APEX process

Exception handling : Synch signal handling in APEX process

Exception handling : Integer overflow handling in APEX process

HW FP error detection : Divide by zero - constrained float

HW FP error detection : Divide by zero - unconstrained float

HW FP error detection : Constrained floating point overflow

HW FP error detection : Unconstrained floating point overflow

HW FP error detection : Divide by zero - C4A012B

HW FP error detection : Divide by zero - C4A013A

HW FP error detection : Overflows on addition and subtraction - C45322A

HW FP error detection : Overflows on multiplication and division - C45523A

HW FP error detection : Overflows on exponentiation - C45622A

Stack Overflow : Overflow on large objects

Stack Overflow : Basic overflow handling in APEX process

Stack Overflow : Cascaded overflow in exception handler

Stack Overflow : Overflow due to large string allocation

Generic_Elementary_Functions : CXG2001: accuracy of Standard.Float

Generic_Elementary_Functions : CXG2003: accuracy of sqrt

Generic_Elementary_Functions : CXG2004: accuracy of sin and cos

Generic_Elementary_Functions : CXG2005: accuracy of FP add and multiply

Generic_Elementary_Functions : CXG2010: accuracy of exp

Generic_Elementary_Functions : CXG2011: accuracy of log

Generic_Elementary_Functions : CXG2012: accuracy of **

Generic_Elementary_Functions : CXG2013: accuracy of tan/cot: float exact

Generic_Elementary_Functions : CXG2013: accuracy of tan: float +/- pi

Generic_Elementary_Functions : CXG2013: accuracy of tan: float fractional

Generic_Elementary_Functions : CXG2013: accuracy of cot: float

Generic_Elementary_Functions : CXG2013: accuracy of tan/cot: float exception

Generic_Elementary_Functions : CXG2013: accuracy of tan/cot: long exact

Generic_Elementary_Functions : CXG2013: accuracy of tan: long +/- pi

Generic_Elementary_Functions : CXG2013: accuracy of tan: long fractional

Generic_Elementary_Functions : CXG2013: accuracy of cot: long

Generic_Elementary_Functions : CXG2013: accuracy of tan/cot: long exception

Generic_Elementary_Functions : CXG2015: accuracy of arcsin and arccos

Generic_Elementary_Functions : CXG2016: accuracy of arctan

Generic_Elementary_Functions : CXG2022: accuracy of binary fix pt mul/div

Generic_Elementary_Functions : CXG2023: accuracy of decimal fix pt mul/div

Generic_Elementary_Functions : CXG2024: accuracy of mixed bin/dec fix pt mul/div

Apex_Timing : routines handling delays

Failed Assertions: 2

Generic_Elementary_Functions : CXG2013: accuracy of tan: float sampled

Tan_Test

Actual : -6.96356E+02

Expected : -6.96370E+02

Delta : 1.40991E-02

Max Error : 8.01652E-04

Generic_Elementary_Functions : CXG2013: accuracy of tan: long sampled

Tan_Test

Actual : 6.36625980697355E+04

Expected : 6.36625980695562E+04

Delta : 1.79301423486322E-07

Max Error : 1.36508677850804E-10

Unexpected Errors: 0
 	

Chapter 10: Migrating Tests from AUnit 1 to AUnit 2 21

10 Migrating Tests from AUnit 1 to AUnit 2

In adapting AUnit to be usable in a restricted Ada run-time library context, we were faced with
a number of issues (e.g. no controlled types, no dynamic allocation, no exception handlers, no
unconstrained function results) that inevitably broke backward compatibility between AUnit 1
and AUnit 2. We have tried to minimize these incompatibilities, but nonetheless converting test
cases, suites and harnesses designed to work with AUnit 1 requires some effort. The following
steps describe the conversion, assuming you are using the same run-time library for both versions
of AUnit.
1. Provide an AUnit package

With AUnit now supporting constrained run-times, all AUnit internal types are constrained.
Technically, this means that the AUnit framework is now a generic package whose instan-
tiation will provide the constraints. In order to port your tests from the previous AUnit
framework, you need to instantiate the ‘AUnit_Framework.Framework’ package. By naming
this instantiation AUnit, you will minimize the steps to achieve the conversion of old tests.
The instantiation and its parameters is described in the Overview section.

2. Modify context clauses
All of the previous AUnit.xxx packages are now declared in AUnit_Framework.Framework.
Therefore, you don’t need to (and can’t) ’with’ them directly in your code. For exam-
ple, with AUnit.Test_Suites; use AUnit.Test_Suites; will now result in a compilation
error. You should replace the above example with with AUnit; use AUnit.Test_Suites;

3. API modifications
The Test_Cases package has been modified to use constrained types. The result is
that the Name function of the Test_Case object no longer returns an object of type
Ada.Strings.Unbounded.String_Access. It now returns an object of type AUnit.Test_
Results.Test_String.
Here is an example of how to change its implementation:� �
function Name (T : List Test Case) return Ada.Strings.Unbounded.String_Access

is

begin

return new String’("My test case");
end Name;
 	

Should be changed to:� �
function Name (T : My Test Case) return AUnit.Test_String is

begin

return AUnit.Test_Results.Format ("My test case");
end Name;
 	

4. Automation of the conversion
Note that some of the changes described above can be automated by scripts.
For example, changing the with clauses and modifying the Name function can be performed
by the following sed script, that can be adapted to the specific structure of the existing tests.

#!/usr/bin/sed

: first_with_clause

s/with \(\([,][]*\)\?AUnit[^,;]*\)*/with AUnit/

t following_with_clauses

n

22 AUnit Cookbook

b first_with_clause

: following_with_clauses

n

s/with \(\([,][]*\)\?AUnit[^,;]*\)*; *//

t following_with_clauses

s/function Name/&/

t function_Name_match

b following_with_clauses

: function_Name_match

s/return .*String_Access/return AUnit.Test_String/

t spec_matched

n

b function_Name_match

: spec_matched

s/;/&/

T body_matched

b end

: body_matched

s/ *end/&/

t end

s/new String[’]/Aunit.Test_Results.Format /

t end

n

b body_matched

:end

The script can be used by the following command to modify all files in dir ‘src’. It will
place the results into ‘ ../AUnit2_tests_repository/src’:

for f in ‘src/*.ad[bs]‘; do

sed -f from_aunit1_to_aunit2.sed $f > ../AUnit2_tests_repository/$f;

done

Chapter 11: Using AUnit with Restricted Run-Time Libraries 23

11 Using AUnit with Restricted Run-Time Libraries

AUnit 2 is a reimplementation of the original AUnit so that it can be used in environments
with restricted Ada run-time libraries, such as ZFP and the cert run-time profile on Wind River
Systems PSC ARINC-653. The patterns given in this document for writing tests, suites and
harnesses are not the only patterns that can be used with AUnit, but they are compatible with
the restricted run-time libraries provided with GNAT Pro.

In general, dynamic allocation and deallocation must be used carefully in test code. For
the cert profile on PSC ARINC-653, all dynamic allocation must be done prior to setting the
application partition into “normal” mode. Deallocation is prohibited in this profile. For the
default ZFP profile, dynamic memory management is not implemented, and should not be used
unless you have provided implementations as described in the GNAT Pro High Integrity User
Guide.

Additional restrictions relevant to the default ZFP profile include:
1. Normally AUnit will list any unexpected exceptions that occur during test execution. How-

ever, since the default ZFP profile does not support exception propagation, control is instead
passed to the user last chance handler. As in all ZFP profiles, such a last chance handler is
required.

2. AUnit requires GNAT.IO provided in ‘g-io.ad?’ in the full or cert profile run-time library
sources (or as implemented by the user). Since this is a run-time library unit it must be
compiled with the gnatmake “-a” switch.

3. The AUnit framework has been modified so that no call the the secondary stack is performed.
However, if the unit under test, or the tests themselves require use of the secondary stack,
then the test suite must export symbol __gnat_get_secondary_stack. This is not actually
used unless the application or unit tests require the secondary stack, in which case it must
be fully implemented.

4. Failed assertions do not abandon execution of the calling test routine in ZFP profiles that
do not support exception propagation. A functional form of the Assert subprogram allows
the calling routine to determine whether to continue or abandon its further execution. This
behavior is selected during compilation when the makefile’s SUPPORT_EXCEPTION variable
is set to no.

5. The timed parameter of the Harness Run routine has no effect when used with the ZFP
profile. This behavior is selected during compilation when the makefile’s SUPPORT_CALENDAR
variable is set to no.

24 AUnit Cookbook

Chapter 12: Installation and Use 25

12 Installation and Use

AUnit 2 now contains support for limited run-times such as zero-foot-print (zfp) and certified
run-time (cert). However, some functionalities have to be disabled on those run-times: the cert
run-time does not provide Ada.Calendar and zfp does not support exceptions, and does not
provide Ada.Calendar either.

The AUnit library can be installed to take into account those limitations.

12.1 Installing AUnit on UNIX systems
• Extract the archive:

$ gunzip -dc aunit-2.01-src.tgz | tar xf -

• To build and install AUnit for a full Ada run-time:
$ cd aunit-2.01-src

$ make INSTALL=<gnat-root> install

Where <gnat-root> is for example /opt/gnat/6.0.1
• Specific installation:

The AUnit makefile supports some specific options, activated using environment variables.
The following options are defined:
• INSTALL: defines the AUnit base installation directory, should always be set.
• TOOL PREFIX: defines the gnat tools prefix to use. For example, to compile AUnit

for powerpc VxWorks, TOOLS PREFIX should be set to powerpc-wrs-vxworks. If not
set, the native compiler will be used.

• RTS: defines the run-time used to compile AUnit. When set to zfp, this automatically
defines SUPPORT CALENDAR and SUPPORT EXCEPTION (see below).

• SUPPORT CALENDAR: takes the values yes (default) or no. If the compiler or the
run-time used do not provide Ada.Calendar, then you should set this variable to ’no’.

• SUPPORT EXCEPTION: takes the values yes (default) or no. If the compiler or the
run-time used do not provide exceptions support, then you should set this variable to
’no’.

Example of installation of AUnit to /opt/gnatpro/5.04a1, for a cross ppc vxworksae com-
piler using the zfp run-time,

$ cd <build-dir>

$ make INSTALL=/opt/gnatpro/5.04a1 RTS=zfp \

TOOL_PREFIX=powerpc-wrs-vxworksae install

• To test AUnit:
The AUnit test suite is in the test subdirectory of the source package. In order to build
and run the AUnit test suite, first install the AUnit library, then:

$ cd test

$ make

The test suite’s makefile supports the following variables: * RTS * TOOL PREFIX

12.2 Installing AUnit on Windows systems

On Windows, an install-shield wizard is available to easily install AUnit. This install shield will
ask some questions during the installation:

• Selection of the compiler: the install-shield will try to detect all GNAT compilers avail-
able in your system. You can directly select one of the detected compilers or enter
the path of the desired compiler. The entered path is the root path of the compiler:
<path>/bin/*gnatmake.exe should be present.

26 AUnit Cookbook

• Selection of the installation directory: by default, AUnit is installed in the same root
directory as the selected compiler. Enter another directory at this stage if you want to
install AUnit in another directory.

• Selection of the run-time: if you want to compile AUnit with a specific run-time, enter the
run-time at this stage.

• Support for exceptions: select the support for exceptions in AUnit. If the selected run-time
does not support exceptions, you should disable the exception support in AUnit at this
stage.

• Support for Ada.Calendar: select the support for Ada.Calendar in AUnit. If the selected
run-time does not provide Ada.Calendar, you should disable the Ada.Calendar support in
AUnit at this stage.

After entering the information above, the install-shield will build and install aunit in the
selected installation directory.

12.3 Installed files

The AUnit library is installed in the specified directory (<gnat-root> identifies the root instal-
lation directory as specified during the installation procedures above):
• the aunit.gpr project is installed in <gnat-root>/lib/gnat
• the AUnit source files are installed in <gnat-root>/include/aunit
• the AUnit library files are installed in <gnat-root>/lib/aunit
• the AUnit documentation is installed in <gnat-root>/share/doc/aunit
• the AUnit examples are installed in <gnat-root>/share/examples/aunit

Chapter 13: GPS Support 27

13 GPS Support

The GPS IDE has a menu Edit -> Unit Testing to generate template code for test cases, test
suites and harnesses. The current templates are for AUnit 1.x, so will need to be migrated as
described in “Migrating Tests from AUnit 1 to AUnit 2”.

28 AUnit Cookbook

	Introduction
	Overview
	Simple Test Case
	Fixture
	Suite
	Composition of Suites
	Support for OOP
	Support for Generics
	Reporting
	Migrating Tests from AUnit 1 to AUnit 2
	Using AUnit with Restricted Run-Time Libraries
	Installation and Use
	Installing AUnit on UNIX systems
	Installing AUnit on Windows systems
	Installed files

	GPS Support

