
ASIS-for-GNAT User’s Guide
Release 2017

May 16, 2017

ASIS-for-GNAT User’s Guide 2017

This page is intentionally left blank.

2 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CONTENTS

1 About This Guide 7

2 Introduction 9
2.1 What Is ASIS? . 9
2.2 ASIS Scope — Which Kinds of Tools Can Be Built with ASIS? . 9

3 Getting Started 11
3.1 The Problem . 11
3.2 An ASIS Application that Solves the Problem . 11
3.3 Required Sequence of Calls . 13
3.4 Building the Executable for an ASIS application . 14
3.5 Preparing Data for an ASIS Application — Generating Tree Files 15
3.6 Running an ASIS Application . 15

4 ASIS Overview 17
4.1 Main ASIS Abstractions . 17
4.2 ASIS Package Hierarchy . 18
4.3 Structural and Semantic Queries . 19
4.4 ASIS Error Handling Policy . 20
4.5 Dynamic Typing of ASIS Queries . 20
4.6 ASIS Iterator . 20
4.7 How to Navigate through the Asis Package Hierarchy . 21

5 ASIS Context 23
5.1 ASIS Context and Tree Files . 23
5.2 Creating Tree Files for Use by ASIS . 23

5.2.1 Creating Trees for Data Decomposition Annex . 25
5.3 Different Ways to Define an ASIS Context in ASIS-for-GNAT 25

5.3.1 Defining a set of tree files making up a Context . 26
5.3.2 Dealing with tree files when opening a Context and processing ASIS queries 26
5.3.3 Processing source files during the consistency check . 27
5.3.4 Setting search paths . 27

5.4 Consistency Problems . 27
5.4.1 Inconsistent versions of ASIS and GNAT . 27
5.4.2 Consistency of a set of tree and source files . 28

5.5 Processing Several Contexts at a Time . 28
5.6 Using ASIS with a cross-compiler . 28

6 ASIS Interpreter asistant 31
6.1 asistant Introduction . 31
6.2 asistant commands . 32

ASIS-for-GNAT User’s Guide 3 of 62

ASIS-for-GNAT User’s Guide 2017

6.3 asistant variables . 33
6.4 Browsing an ASIS tree . 33
6.5 Example . 34

7 ASIS Application Templates 37

8 ASIS Tutorials 39

9 How to Build Efficient ASIS Applications 41
9.1 Tree Swapping as a Performance Issue . 41
9.2 Queries That Can Cause Tree Swapping . 41
9.3 How to Avoid Unnecessary Tree Swapping . 42
9.4 Using gnatmake to Create Tree Files . 42

10 Processing an Ada Library by an ASIS-Based Tool 45

11 Compiling, Binding, and Linking Applications with ASIS-for-GNAT 47

12 ASIS-for-GNAT Warnings 49

13 Exception Handling and Reporting Internal Bugs 51

14 File Naming Conventions and Application Name Space 53

A GNU Free Documentation License 55

Index 61

4 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

GNAT, The GNU Ada Development Environment
The GNAT Ada Compiler
Version 2017

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being
‘GNU Free Documentation License’, with the Front-Cover Texts being ‘ASIS-for-GNAT User’s Guide’, and with no
Back-Cover Texts. A copy of the license is included in the section entitled ‘GNU Free Documentation License’.

ASIS-for-GNAT User’s Guide 5 of 62

ASIS-for-GNAT User’s Guide 2017

This page is intentionally left blank.

6 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CHAPTER

ONE

ABOUT THIS GUIDE

This guide has two aims. The first one is to introduce you to the Ada Semantic Interface Specification (ASIS) and
show you how you can build various useful tools on top of ASIS. The second is to describe the ASIS implementation
for the GNAT Ada compiler.

What This Guide Contains

This guide contains the following chapters:

• Introduction, contains the general definition of ASIS and gives some examples of tools which can be built on
top of ASIS.

• Getting Started, contains a short guided tour through the development and use of ASIS-for-GNAT-based tools.

• ASIS Overview, gives an overview of ASIS, allowing an ASIS newcomer to navigate through the ASIS definition
(readers already familiar with ASIS can skip this section).

• ASIS Context, defines the ASIS Context concept in ASIS-for-GNAT and explains how to prepare a set of Ada
components to be processed by an ASIS application.

• ASIS Application Templates, describes a set of Ada source components provided by the ASIS-for-GNAT
distribution that may be used as a basis for developing ASIS applications.

• ASIS Tutorials, describes some examples included in the ASIS-for-GNAT distribution.

• How to Build Efficient ASIS Applications, describes how to deal with ‘tree swapping’, a potential performance
issue with ASIS applications.

• Processing an Ada Library by an ASIS-Based Tool, shows how to use an ASIS tool on pre-compiled Ada
libraries.

• Compiling, Binding, and Linking Applications with ASIS-for-GNAT , explains how to compile an ASIS
application with ASIS-for-GNAT and how to create the resulting executable.

• ASIS-for-GNAT Warnings, describes the warnings generated by the ASIS implementation.

• Exception Handling and Reporting Internal Bugs, explains what happens if an ASIS implementation internal
problem is detected during the processing of an ASIS or ASIS Extensions query

• File Naming Conventions and Application Name Space, explains which names can and cannot be used as names
of ASIS application components.

What You Should Know Before Reading This Guide

This User’s Guide assumes that you are familiar with Ada language, as described in the International Standard
ANSI/ISO/IEC-8652:2012(E) (hereafter referred to as the Ada Reference Manual), and that you have some basic
experience in Ada programming with GNAT.

This User’s Guide also assumes that you have ASIS-for-GNAT properly installed for your GNAT compiler, and that
you are familiar with the structure of the ASIS-for-GNAT distribution (if not, see the top ASIS README file).

ASIS-for-GNAT User’s Guide 7 of 62

ASIS-for-GNAT User’s Guide 2017

This guide does not require previous knowledge of or experience with ASIS itself.

Related Information

The following sources contain useful supplemental information:

• GNAT User’s Guide, for information about the GNAT environment

• ASIS-for-GNAT Installation Guide

• The ASIS-for-GNAT Reference Manual

• The ASIS 95 definition, available as ISO/IEC International Standard 15291.

• The Web site for the ASIS Working Group: http://www.acm.org/sigada/wg/asiswg

Conventions

Following are examples of the typographical and graphic conventions used in this guide:

• Functions, utility program names, standard names, and classes.

• Option flags

• File Names, button names, and field names.

• Variables.

• Emphasis.

• [optional information or parameters]

• Examples are described by text

and then shown this way.

Commands that are entered by the user are preceded in this manual by the character ‘$’ (dollar sign) followed by
space. If your system uses this sequence as a prompt, then the commands will appear exactly as you see them in
the manual. If your system uses some other prompt, then the command will appear with the $ replaced by whatever
prompt character you are using.

Full file names are shown with the ‘/‘ character as the directory separator; e.g., parent-dir/subdir/myfile.adb.
If you are using GNAT on a Windows platform, please note that the ‘\‘ character should be used instead.

8 of 62 ASIS-for-GNAT User’s Guide

http://www.acm.org/sigada/wg/asiswg

ASIS-for-GNAT User’s Guide 2017

CHAPTER

TWO

INTRODUCTION

2.1 What Is ASIS?

The Ada Semantic Interface Specification (ASIS) is an open and published callable interface that allows a tool to
access syntactic and semantic information about an Ada program, independent of the compilation environment that
compiled the program.

Technically, ASIS comprises a hierarchy of Ada packages rooted at the package Asis. These packages define a set of
Ada private types that model the components of an Ada program (e.g., declarations, statements, expressions) and their
interrelationships. Operations for these types, called ASIS queries, give you statically determinable information about
Ada compilation units in your environment.

You may use ASIS as a third-part Ada library to implement a number of useful program analysis tools.

2.2 ASIS Scope — Which Kinds of Tools Can Be Built with ASIS?

The following ASIS properties define the ASIS scope:

• ASIS is a read-only interface.

• ASIS provides only statically-determinable information about Ada programs.

• ASIS provides access to the syntactic and basic semantic properties of compiled Ada units. If some semantic
property of a program cannot be directly queried by means of ASIS queries, an ASIS application can compute
the needed piece of information itself from the information available through ASIS queries.

• ASIS provides information from/about Ada units in high-level terms that conform with the Ada Reference
Manual and that are Ada/ASIS-implementation-independent in nature.

Examples of tools that benefit from the ASIS interface include, but are not limited to: automated code monitors,
browsers, call tree tools, code reformators, coding standards compliance tools, correctness verifiers, debuggers,
dependency tree analysis tools, design tools, document generators, metrics tools, quality assessment tools, reverse
engineering tools, re-engineering tools, style checkers, test tools, timing estimators, and translators.

ASIS-for-GNAT User’s Guide 9 of 62

ASIS-for-GNAT User’s Guide 2017

This page is intentionally left blank.

10 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CHAPTER

THREE

GETTING STARTED

This section outlines the ASIS application development and usage cycle. We first take a sample problem and present
an ASIS application that offers a solution; then we show how to build the executable with ASIS-for-GNAT and how to
prepare an ASIS ‘Context’ to be processed by the program; and finally we show the output produced by our program
when it is applied to itself.

3.1 The Problem

We wish to process some set of Ada compilation units as follows: for every unit, print its full expanded Ada name,
whether this unit is a spec, a body or a subunit, and whether this unit is a user-defined unit, an Ada predefined unit or
an implementation-specific unit (such as a part of a Run-Time Library).

3.2 An ASIS Application that Solves the Problem

with Ada.Wide_Text_IO; use Ada.Wide_Text_IO;
with Ada.Characters.Handling; use Ada.Characters.Handling;

-- ASIS-specific context clauses:
with Asis;
with Asis.Implementation;
with Asis.Ada_Environments;
with Asis.Compilation_Units;
with Asis.Exceptions;
with Asis.Errors;

procedure Example1 is
My_Context : Asis.Context;
-- ASIS Context is an abstraction of an Ada compilation environment,
-- it defines a set of ASIS Compilation Units available through
-- ASIS queries

begin
-- first, by initializing an ASIS implementation, we make it
-- ready for work
Asis.Implementation.Initialize ("-ws");
-- The "-ws" parameter of the Initialize procedure means
-- "turn off all the ASIS warnings"

-- then we define our Context by making an association with
-- the "physical" environment:

ASIS-for-GNAT User’s Guide 11 of 62

ASIS-for-GNAT User’s Guide 2017

Asis.Ada_Environments.Associate
(My_Context, "My Asis Context", "-CA");

-- "-CA" as a Context parameter means "consider all the tree
-- files in the current directory"
-- See ASIS-for-GNAT Reference Manual for the description of the
-- parameters of the Associate query, see also chapter
-- "ASIS Context" for the description of different kinds of
-- ASIS Context in case of ASIS-for-GNAT

-- by opening a Context we make it ready for processing by ASIS
-- queries
Asis.Ada_Environments.Open (My_Context);
Processing_Units: declare

Next_Unit : Asis.Compilation_Unit;
-- ASIS Compilation_Unit is the abstraction to represent Ada
-- compilation units as described in RM 95

All_Units : Asis.Compilation_Unit_List :=
-- ASIS lists are one-dimensional unconstrained arrays.
-- Therefore, when declaring an object of an ASIS list type,
-- we have to provide either a constraint or explicit
-- initialization expression:

Asis.Compilation_Units.Compilation_Units (My_Context);
-- The Compilation_Units query returns a list of all the units
-- contained in an ASIS Context

begin
Put_Line

("A Context contains the following compilation units:");
New_Line;
for I in All_Units'Range loop

Next_Unit := All_Units (I);
Put (" ");

-- to get a unit name, we just need a Unit_Full_Name
-- query. ASIS uses Wide_String as a string type,
-- that is why we are using Ada.Wide_Text_IO

Put (Asis.Compilation_Units.Unit_Full_Name (Next_Unit));
-- to get more info about a unit, we ask about unit class
-- and about unit origin

case Asis.Compilation_Units.Unit_Kind (Next_Unit) is
when Asis.A_Library_Unit_Body =>

Put (" (body)");
when Asis.A_Subunit =>

Put (" (subunit)");
when others =>

Put (" (spec)");
end case;

case Asis.Compilation_Units.Unit_Origin (Next_Unit) is
when Asis.An_Application_Unit =>

Put_Line (" - user-defined unit");
when Asis.An_Implementation_Unit =>

Put_Line (" - implementation-specific unit");
when Asis.A_Predefined_Unit =>

Put_Line (" - Ada predefined unit");

12 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

when Asis.Not_An_Origin =>
Put_Line
(" - unit does not actually exist in a Context");

end case;

end loop;
end Processing_Units;

-- Cleaning up: we have to close out the Context, break its
-- association with the external environment and finalize
-- our ASIS implementation to release all the resources used:
Asis.Ada_Environments.Close (My_Context);
Asis.Ada_Environments.Dissociate (My_Context);
Asis.Implementation.Finalize;

exception
when Asis.Exceptions.ASIS_Inappropriate_Context |

Asis.Exceptions.ASIS_Inappropriate_Compilation_Unit |
Asis.Exceptions.ASIS_Failed =>

-- we check not for all the ASIS-defined exceptions, but only
-- those of them which can actually be raised in our ASIS
-- application.
--
-- If an ASIS exception is raised, we output the ASIS error
-- status and the ASIS diagnosis string:

Put_Line ("ASIS exception is raised:");
Put_Line ("ASIS diagnosis is:");
Put_Line (Asis.Implementation.Diagnosis);
Put ("ASIS error status is: ");
Put_Line

(Asis.Errors.Error_Kinds'Wide_Image
(Asis.Implementation.Status));

end Example1;

3.3 Required Sequence of Calls

An ASIS application must use the following sequence of calls:

• Asis.Implementation.Initialize (...);

This initializes the ASIS implementation’s internal data structures. In general, calling an ASIS query is
erroneous unless the Initialize procedure has been invoked.

• Asis.Ada_Environments.Associate (...);

This call is the only means to define a value of a variable of the ASIS limited private type Context. The value
represents some specific association of the ASIS Context with the ‘external world’. The way of making this
association and the meaning of the corresponding parameters of the Associate query are implementation-
specific, but as soon as this association has been made and a Context variable is opened, the ASIS Context
designated by this variable may be considered to be a set of ASIS Compilation_Units available through
the ASIS queries.

• Asis.Ada_Environments.Open (...);

Opening an ASIS Context variable makes the corresponding Context accessible to all ASIS queries.

After opening the Context, an ASIS application can start obtaining ASIS Compilation_Units from it,

ASIS-for-GNAT User’s Guide 13 of 62

ASIS-for-GNAT User’s Guide 2017

can further analyze Compilation_Units by decomposing them into ASIS Elements, etc. ASIS relies on
the fact that the content of a Context remains ‘frozen’ as long as the Context remains open. It is erroneous
to change through some non-ASIS program any data structures used by an ASIS implementation to define and
implement this Context while the Context is open.

• Now all the ASIS queries can be used. It is possible to access Compilation_Units from the Context, to
decompose units into syntactic Elements, to query syntactic and semantic properties of these Elements and
so on.

• Asis.Ada_Environments.Close (...);

After closing the Context it is impossible to retrieve any information from it. All the values of the ASIS
objects of Compilation_Unit, Element and Line types obtained when this Context was open become
obsolete, and it is erroneous to use them after the Context was closed. The content of this Context need
not be frozen while the Context remains closed. Note that a closed Context keeps its association with the
‘external world’ and it may be opened again with the same association. Note also that the content (that is, the
corresponding set of ASIS Compilation_Units) of the Context may be different from what was in the
Context before, because the external world may have changed while the Context remained closed.

• Asis.Ada_Environments.Dissociate (...);

This query breaks the association between the corresponding ASIS Context and the ‘external world’, and the
corresponding Context variable becomes undefined.

• Asis.Implementation.Finalize (...);

This releases all the resources used by an ASIS implementation.

An application can perform these steps in a loop. It may initialize and finalize an ASIS implementation several times, it
may associate and dissociate the same Context several times while an ASIS implementation remains initialized, and
it may open and close the same Context several times while the Context keeps its association with the ‘external
world’. An application can have several ASIS Contexts opened at a time (the upper limit is implementation-
specific), and for each open Context, an application can process several Compilation_Units obtained from this
Context at a time (the upper limit is also implementation-specific). ASIS-for-GNAT does not impose any special
limitations on the number of ASIS Contexts and on the number of the ASIS Compilation_Units processed at
a time, as long as an ASIS application is within the general resource limitations of the underlying system.

3.4 Building the Executable for an ASIS application

The rest of this section assumes that you have ASIS-for-GNAT properly installed as an Ada library. As for other
components of the GNAT technology, the structure of the ASIS distribution and the ASIS building and installation
process is based on project files. So, the same should be the case for ASIS application.

For your ASIS application you should create a project file that depends on the main ASIS project file asis.gpr.
Here is the simplest version of such a project file:

with "asis";
project Example1 is

for Main use ("example1.adb");
end Example1;

To get the executable for the ASIS application from An ASIS Application that Solves the Problem (assuming that it is
located in your current directory as the Ada source file named example1.adb, and the corresponding project file is
also located in the current directory), invoke gprbuid as follows:

$ gprbuild example1.gpr

14 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

For more details concerning compiling ASIS applications and building executables for them with ASIS-for-GNAT see
Compiling, Binding, and Linking Applications with ASIS-for-GNAT .

3.5 Preparing Data for an ASIS Application — Generating Tree Files

The general ASIS implementation technique is to use some information generated by the underlying Ada compiler as
the basis for retrieving information from the Ada environment. As a consequence, an ASIS application can process
only legal (compilable) Ada code, and in most of the cases to make a compilation unit ‘visible’ for ASIS means to
compile this unit (probably with some ASIS-specific options)

ASIS-for-GNAT uses tree output files (or, in short, tree files) to capture information about an Ada unit from an Ada
environment. A tree file is generated by GNAT, and it contains a snapshot of the compiler’s internal data structures at
the end of the successful compilation of the corresponding source file.

To create a tree file for a unit contained in some source file, you should compile this file with the -gnatct compiler
option. If you want to apply the program described in section An ASIS Application that Solves the Problem to itself,
compile the source of this application with the command:

$ gcc -c -gnatct example1.adb

and as a result, GNAT will generate the tree file named example1.adt in the current directory.

For more information on how to generate and deal with tree files, see ASIS Context, and ASIS Tutorials.

3.6 Running an ASIS Application

To complete our example, let’s execute our ASIS application. If you have followed all the steps described in this
chapter, your current directory should contain the executable example1 (example1.exe on a Windows platform)
and the tree file example1.adt. If we run our application, it will process an ASIS Context defined by one tree
file example1.adt (for more details about defining an ASIS Context see ASIS Context, and the ASIS-for-GNAT
Reference Manual). The result will be:

A Context contains the following compilation units:

Standard (spec) - Ada predefined unit
Example1 (body) - user-defined unit
Ada (spec) - Ada predefined unit
Ada.Wide_Text_IO (spec) - Ada predefined unit
Ada.IO_Exceptions (spec) - Ada predefined unit
Ada.Streams (spec) - Ada predefined unit
System (spec) - Ada predefined unit
System.File_Control_Block (spec) - implementation-specific unit
Interfaces (spec) - Ada predefined unit
Interfaces.C_Streams (spec) - implementation-specific unit
System.Parameters (spec) - implementation-specific unit
System.WCh_Con (spec) - implementation-specific unit
Ada.Characters (spec) - Ada predefined unit
Ada.Characters.Handling (spec) - Ada predefined unit
Asis (spec) - user-defined unit
A4G (spec) - user-defined unit
A4G.A_Types (spec) - user-defined unit
Ada.Characters.Latin_1 (spec) - Ada predefined unit
GNAT (spec) - implementation-specific unit

ASIS-for-GNAT User’s Guide 15 of 62

ASIS-for-GNAT User’s Guide 2017

GNAT.OS_Lib (spec) - implementation-specific unit
GNAT.Strings (spec) - implementation-specific unit
Unchecked_Deallocation (spec) - Ada predefined unit
Sinfo (spec) - user-defined unit
Types (spec) - user-defined unit
Uintp (spec) - user-defined unit
Alloc (spec) - user-defined unit
Table (spec) - user-defined unit
Urealp (spec) - user-defined unit
A4G.Int_Knds (spec) - user-defined unit
Asis.Implementation (spec) - user-defined unit
Asis.Errors (spec) - user-defined unit
Asis.Ada_Environments (spec) - user-defined unit
Asis.Compilation_Units (spec) - user-defined unit
Asis.Ada_Environments.Containers (spec) - user-defined unit
Asis.Exceptions (spec) - user-defined unit
System.Unsigned_Types (spec) - implementation-specific unit

Note that the tree file contains the full syntactic and semantic information not only about the unit compiled by the
given call to gcc, but also about all the units upon which this unit depends semantically; that is why you can see in the
output list a number of units which are not mentioned in our example.

In the current version of ASIS-for-GNAT, ASIS implementation components are considered user-defined, rather than
implementation-specific, units.

16 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CHAPTER

FOUR

ASIS OVERVIEW

This chapter contains a short overview of the ASIS definition as given in the ISO/IEC 15291:1999 ASIS Standard.
This overview is aimed at helping an ASIS newcomer find needed information in the ASIS definition.

For more details, please refer to the ASIS definition itself. To gain some initial experience with ASIS, try the examples
in ASIS Tutorials.

4.1 Main ASIS Abstractions

ASIS is based on three main abstractions used to describe Ada programs; these abstractions are implemented as Ada
private types:

Context

An ASIS Context is a logical handle to an Ada environment, as defined in the Ada Reference Manual,
Chapter 10. An ASIS application developer may view an ASIS Context as a way to define a set of
compilation units available through the ASIS queries.

Compilation_Unit

An ASIS Compilation_Unit is a logical handle to an Ada compilation unit. It reflects practically
all the properties of compilation units defined by the Ada Reference Manual, and it also reflects some
properties of ‘physical objects’ used by an underlying Ada implementation to model compilation units.
Examples of such properties are the time of the last update, and the name of the object containing the
unit’s source text. An ASIS Compilation_Unit provides the ‘black-box’ view of a compilation unit,
considering the unit as a whole. It may be decomposed into ASIS Elements and then analyzed in
‘white-box’ fashion.

Element

An ASIS Element is a logical handle to a syntactic component of an ASIS Compilation_Unit
(either explicit or implicit).

Some ASIS components use additional abstractions (private types) needed for specific pieces of functionality:

Container

An ASIS Container (defined by the Asis.Ada_Environments.Containers package) pro-
vides a means for structuring the content of an ASIS Context; i.e., ASIS Compilation_Units
are grouped into Containers.

Line

An ASIS Line (defined by the Asis.Text package) is the abstraction of a line of code in an Ada source
text. An ASIS Line has a length, a string image and a number.

Span

ASIS-for-GNAT User’s Guide 17 of 62

ASIS-for-GNAT User’s Guide 2017

An ASIS Span (defined by the Asis.Text package) defines the location of an Element, a
Compilation_Unit, or a whole compilation in the corresponding source text.

Id

An ASIS Id (defined by the Asis.Ids package) provides a way to store some ‘image’ of an ASIS
Element outside an ASIS application. An application may create an Id value from an Element and
store it in a file. Subsequently the same or another application may read this Id value and convert it back
into the corresponding Element value.

4.2 ASIS Package Hierarchy

ASIS is defined as a hierarchy of Ada packages. Below is a short description of this hierarchy.

Asis

The root package of the hierarchy. It defines the main ASIS abstractions — Context,
Compilation_Unit and Element — as Ada private types. It also contains a set of enumeration
types that define the classification hierarchy for ASIS Elements (which closely reflects the Ada syntax
defined in the Ada Reference Manual) and the classification of ASIS Compilation_Units. This
package does not contain any queries.

Asis.Implementation Contains subprograms that control an ASIS implementation: initializing and finalizing it,
retrieving and resetting diagnosis information. Its child package Asis.Implementation.Permissions
contains boolean queries that reflect how ASIS implementation-specific features are implemented.

Asis.Ada_Environments

Contains queries that deal with an ASIS Context: associating and dissociating, opening and closing a
Context.

Asis.Compilation_Units

Contains queries that work with ASIS Compilation_Units: obtaining units from a Context, getting
semantic dependencies between units and ‘black-box’ unit properties.

Asis.Compilation_Units.Relations

Contains queries that return integrated semantic dependencies among ASIS Compilation_Units;
e.g., all the units needed by a given unit to be included in a partition.

Asis.Elements

Contains queries working on Elements and implementing general Element properties: gateway
queries from ASIS Compilation Units to ASIS Elements, queries defining the position of an Element
in the Element classification hierarchy, queries which define for a given Element its enclosing
Compilation_Unit and its enclosing Element. It also contains queries for processing pragmas.

Packages working on specific Elements

This group contains the following packages: Asis.Declarations, Asis.Definitions,
Asis.Statements, Asis.Expressions and ASIS.Clauses. Each of these packages contains
queries working on Elements of the corresponding kind — that is, representing Ada declarations,
definitions, statements, expressions and clauses respectively.

Asis.Text

Contains queries returning information about the source representation of ASIS Compilation_Units
and ASIS Elements.

Asis.Exceptions

18 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

Defines ASIS exceptions.

Asis.Errors

Defines possible ASIS error status values.

4.3 Structural and Semantic Queries

Queries working on Elements and returning Elements or Element lists are divided into structural and
semantic queries. Each structural query (except Enclosing_Element) implements one step of the
parent-to-child decomposition of an Ada program according to the ASIS Element classification hierarchy.
Asis.Elements.Enclosing_Element query implements the reverse child-to-parent step. (For implicit
Elements obtained as results of semantic queries, Enclosing_Element might not correspond to what could
be expected from the Ada syntax and semantics; in this case the documentation of a semantic query also defines the
effect of Enclosing_Element applied to its result).

A semantic query for a given Element returns the Element or the list of Elements representing some semantic
property — e.g., a type declaration for an expression as the expression’s type, a defining identifier as a definition for a
simple name, etc.

For example, if we have Element El representing an assignment statement:

X := A + B;

then we can retrieve the structural components of this assignment statement by applying the appropriate structural
queries:

El_Var := Asis.Statements.Assignment_Variable_Name (El); -- X
El_Expr := Asis.Statements.Assignment_Expression (El); -- A + B

Then we can analyze semantic properties of the variable name represented by El_Var and of the expression
represented by El_Expr by means of appropriate semantic queries:

El_Var_Def :=
Asis.Expressions.Corresponding_Name_Definition (El_Var);

El_Expt_Type :=
Asis.Expressions.Corresponding_Expression_Type (El_Expr);

As a result, El_Var_Def will be of A_Defining_Identifier kind and will represent the defining occurrence
of X, while El_Expt_Type of a kind An_Ordinary_Type_Declaration will represent the declaration of the
type of the expression A + B.

If we apply Asis.Elements.Enclosing_Element to El_Var or to El_Expr, we will get back to the
Element representing the assignment statement.

An important difference between classifying queries working on Elements as structural versus semantic is that all
the structural queries must be within one ASIS Compilation_Unit, but for semantic queries it is typical for the
argument of a query to be in one ASIS Compilation_Unit, while the result of this query is in another ASIS
Compilation_Unit.

ASIS-for-GNAT User’s Guide 19 of 62

ASIS-for-GNAT User’s Guide 2017

4.4 ASIS Error Handling Policy

Only ASIS-defined exceptions (and the Ada predefined Storage_Error exception) propagate out from
ASIS queries. ASIS exceptions are defined in the Asis.Exceptions package. When an ASIS exception
is raised, ASIS sets the Error Status (the possible ASIS error conditions are defined as the values of the
Asis.Errors.Error_Kinds type) and forms the Diagnosis string. An application can query the current
value of the ASIS Error Status by the Asis.Implementation.Status query, and the current content of the
Diagnosis string by Asis.Implementation.Diagnosis query. An application can reset the Error Status
and the Diagnosis string by invoking the Asis.Implementation.Set_Status procedure.

Caution: The ASIS way of providing error information is not tasking safe. The Diagnosis string and Error Kind
are global to an entire partition, and are not ‘per task’. If ASIS exceptions are raised in more then one task of a
multi-tasking ASIS application, the result of querying the error information in a particular task may be incorrect.

4.5 Dynamic Typing of ASIS Queries

The ASIS type Element covers all Ada syntactic constructs, and Compilation_Unit covers all Ada compilation
units. ASIS defines an Element classification hierarchy (which reflects very closely the hierarchy of Ada syntactic
categories defined in the Ada Reference Manual, and ASIS similarly defines a classification scheme for ASIS
Compilation_Units. For any Element you can get its position in the Element classification hierarchy by
means of classification queries defined in the package Asis.Elements.

The classification queries for Compilation_Units are defined in the package Asis.Compilation_Units.
Many of the queries working on Elements and Compilation_Units can be applied only to specific
kinds of Elements and Compilation_Units respectively. For example, it does not make sense to query
Assignment_Variable_Name for an Element of An_Ordinary_Type_Declaration kind. An attempt
to perform such an operation will be detected at run-time, and an exception will be raised as explained in the next
paragraph.

ASIS may be viewed as a dynamically typed interface. For any Element structural or semantic query (that is,
for a query having an Element as an argument and returning either an Element or Element list as a result) a
list of appropriate Element kinds is explicitly defined in the query documentation which immediately follows the
declaration of the corresponding subprogram in the code of the ASIS package. This means that the query can be applied
only to argument Elements being of the kinds from this list. If the kind of the argument Element does not belong to
this list, the corresponding call to this query raises the Asis.Exceptions.ASIS_Inappropriate_Element
exception with Asis.Errors.Value_Error error status set.

The situation for the queries working on Compilation_Units is similar. If a query lists appropriate unit
kinds in its documentation, then this query can work only on Compilation_Units of the kinds from this
list. The query should raise Asis.Exceptions.ASIS_Inappropriate_Compilation_Unit with
Asis.Errors.Value_Error error status set when called for any Compilation_Unit with a kind not from
the list of the appropriate unit kinds.

If a query has a list of expected Element kinds or expected Compilation_Unit kinds in its documentation, this
query does not raise any exception when called with any argument, but it produces a meaningful result only when
called with an argument with the kind from this list. For example, if Asis.Elements.Statement_Kind query
is called for an argument of A_Declaration kind, it just returns Not_A_Statement, but without raising any
exception.

4.6 ASIS Iterator

ASIS provides a powerful mechanism to traverse an Ada unit, the generic procedure Asis.Iterator.Traverse_Element.
This procedure makes a top-down left-to-right (or depth-first) traversal of the ASIS tree (that is, of the syntax structure

20 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

of the Ada code viewed as the hierarchy of ASIS Elements). In the course of this traversal, it applies to
each Element the formal Pre_Operation procedure when visiting this Element for the first time, and
the formal Post_Operation procedure when leaving this Element. By providing specific procedures for
Pre_Operation and Post_Operation when instantiating the generic unit, you can automatically process all
ASIS Elements found in a given ASIS tree.

For example, suppose we have an assignment statement:

X := F (Y);

When called for an Element representing this statement, a Traverse_Element instantiation does the fol-
lowing (below Pre_Op and Post_Op stand for actual procedures provided for formal Pre_Operation and
Post_Operation, and numbers indicate the sequence of calls to Pre_Op and Post_Op during traversal):

(1 Pre_Op) X := F (Y) (10 Post_Op)
|
|

| |

(2 Pre_Op) X (3 Post_Op) |
|

(4 Pre_Op) F(Y) (9 Post_Op)
|
|

| |

(5 Pre_Op) F (6 Post_Op) (7 Pre_Op) Y (8 Post_Op)

To see in more detail how Traverse_Element may be used for rapid development of a number of useful ASIS
applications, try the examples in ASIS Tutorials.

4.7 How to Navigate through the Asis Package Hierarchy

The following hints and tips may be useful when looking for some specific information in the ASIS source files:

• Use the short overview of the ASIS packages given in ASIS Package Hierarchy, to limit your browsing to a
smaller set of ASIS packages (e.g., if you are interested in what can be done with Compilation_Units then
look only in Asis.Compilation_Units; if you are looking for queries that can be used to decompose and
analyze declarations, limit your search to Asis.Declarations).

• Inside ASIS packages working with particular kinds of Elements (Asis.Declarations,
Asis.Definitions, Asis.Statements, Asis.Expressions and ASIS.Clauses) queries
are ordered according to the order of the description of the corresponding constructions in the Ada Reference
Manual (e.g., package Asis.Statements starts from a query retrieving labels and ends with the query
decomposing a code statement).

• The names of all the semantic queries (and only ones) start from Corresponding_... or Implicit_...

• Use comment sentinels given in the specification of the ASIS packages. A sentinel of the form ‘--|ER‘ (from
‘Element Reference’) introduces a new Element kind, and it is followed by a group of sentinels of the
form ‘--|CR‘ (from ‘Child Reference’), which list queries yielding the child Elements for the Element just
introduced.

ASIS-for-GNAT User’s Guide 21 of 62

ASIS-for-GNAT User’s Guide 2017

This page is intentionally left blank.

22 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CHAPTER

FIVE

ASIS CONTEXT

From an ASIS application viewpoint we may view an ASIS Context as a set of ASIS Compilation_Units
accessible through ASIS queries.

The common ASIS implementation technique is to base an implementation of an ASIS Context on some persistent
data structures created by the underlying Ada compiler when compiling Ada compilation units maintained by this
compiler. An ASIS Context can only contain compilable (that is, legal) compilation units.

5.1 ASIS Context and Tree Files

The ASIS-for-GNAT implementation is based on tree output files, or, simply, tree files. When called with the special
option -gnatt, GNAT creates and outputs a tree file if no error was detected during the compilation. The tree file
is a kind of snapshot of the compiler internal data structures (basically, of the Abstract Syntax Tree (AST)) at the end
of the successful compilation. ASIS then inputs tree files and recreates in its internal data structures exactly the same
picture the compiler had at the end of the corresponding successful compilation.

An important consequence of the GNAT source-based compilation model is that the AST contains full information not
only about the unit being compiled, but also about all the units upon which this unit depends semantically. Therefore,
having read a tree file, ASIS can in general provide information about more than one unit. By processing a tree file,
a tool can provide information about the unit for which this tree was created and about all the units upon which it
depends semantically. However, to process several units, ASIS sometimes has to change the tree being processed (in
particular, this occurs when an application switches between units which do not semantically depend on each other,
for example, two package bodies). Therefore, in the course of an ASIS application, ASIS may read different tree files
and it may read the same tree file more then once.

The name of a tree file is obtained from the name of the source file being compiled by replacing its suffix with ‘.adt‘.
For example, the tree file for foo.adb is named foo.adt.

5.2 Creating Tree Files for Use by ASIS

Neither gcc nor gnatmake will create tree files automatically when you are working with your Ada program. It is
your responsibility as a user of an ASIS application to create a set of tree files that correctly reflect the set of the Ada
components to be processed by the ASIS application, as well as to maintain the consistency of the trees and the related
source files.

To create a tree file for a given source file, you need to compile the corresponding source file with the -gnatct
option.

$ gcc -c -gnatct foo.adb

ASIS-for-GNAT User’s Guide 23 of 62

ASIS-for-GNAT User’s Guide 2017

will produce foo.adt, provided that foo.adb contains the source of a legal Ada compilation unit. Actially, the
-gnatct is an ASIS-specific combination of two compileation options, -gnatt and -gnatc. The -gnatt option
generates a tree file, and -gnatc turns off AST expansion. ASIS needs tree files created without AST expansion,
whereas to create an object file, GNAT needs an expanded AST. Therefore it is impossible for one compilation
command to to produce both a tree file and an object file for a given source file.

The following points are important to remember when generating and dealing with tree files:

• ASIS-for-GNAT is distributed for a particular version of GNAT.

All the trees to be processed by an ASIS application should be generated by this specific version of the compiler.

• A tree file is not created if an error has been detected during the compilation.

• In contrast with object files, a tree file may be generated for any legal Ada compilation unit, including a library
package declaration requiring a body or a subunit.

• A set of tree files processed by an ASIS application may be inconsistent; for example, two tree files may have
been created with different versions of the source of the same unit. This will lead to inconsistencies in the
corresponding ASIS Context. See Consistency Problems, for more details.

• Do not move tree, object or source files among directories in the underlying file system! ASIS might assume
an inconsistency between tree and source files when opening a Context, or you may get wrong results when
querying the source or object file for a given ASIS Compilation_Unit.

• When invoking gcc or gnatmake to create tree files, make sure that all file and directory names containing
relative path information start from ./ or ../ (.\ and ..\ respectively in MS Windows). That is, to create
a tree file for the source file foo.adb located in the inner directory named inner, you should invoke gcc
(assuming an MS Windows platform) as:

$ gcc -c -gnatct .\inner\foo.adb

but not as

$ gcc -c -gnatct inner\foo.ads

Otherwise ASIS will not perform correctly.

• When reading in a tree file, ASIS checks that this tree file was created with the -gnatc option, and it does not
accept trees created without this option.

• If called to create a tree, GNAT does not destroy an ALI file if the ALI file already exists for the unit being
compiled and if this ALI file is up-to-date. Moreover, GNAT may place some information from the existing
ALI file into the tree file. If you would like to have both object and tree files for your program, first create the
object files, and then the tree files.

• There is only one extension for tree files, namely .adt, whereas the standard GNAT name convention for the
Ada source files uses different extensions for a spec (.ads) and for a body (.adb). This means that if you first
generate a tree for a unit’s body:

$ gcc -c -gnatct foo.adb

and then generate the tree for the corresponding spec:

$ gcc -c -gnatct foo.ads

then the tree file foo.adt will be created twice: first for the body, and then for the spec. The tree for the spec
will override the tree for the body, and the information about the body will be lost for ASIS. If you first create

24 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

the tree for a spec, and then for a body, the second tree will also override the first one, but no information will
be lost for ASIS, because the tree for a body contains full information about the corresponding spec.

To avoid losing information when creating trees for a set of Ada sources, try to use gnatmake whenever
possible (see Using gnatmake to Create Tree Files for more details). Otherwise, first create trees for specs and
then for bodies:

$ gcc -c -gnatct *.ads
$ gcc -c -gnatct *.adb

• Reading tree files is a time-consuming operation. Try to minimize the number of tree files to be processed by
your application, and try to avoid unnecessary tree swappings. (See How to Build Efficient ASIS Applications,
for some tips).

• It is possible to create tree files “on the fly”, as part of the processing of the ASIS queries that obtain units
from a Context. In this case there is no need to create tree files before running an ASIS application using the
corresponding Context mode. Note that this possibility goes beyond the ASIS Standard, and there are some
limitations imposed on some ASIS queries, but this functionality may be useful for ASIS tools that process only
one Compilation_Unit at a time. See the ASIS-for-GNAT Reference Manual for more details.

Note that between opening and closing a Context, an ASIS application should not change its working directory;
otherwise execution of the application is erroneous.

5.2.1 Creating Trees for Data Decomposition Annex

Using the ASIS Data Decomposition Annex (DDA) does not require anything special to be done by an ASIS user, with
one exception. The implementation of the ASIS DDA is based on some special annotations added by the compiler
to the trees used by ASIS. An ASIS user should be aware of the fact that trees created for subunits do not have this
special annotation.

Therefore ASIS DDA queries do not work correctly on trees created for subunits (and these queries might not work
correctly if a set of tree files making up a Context contains a tree created for a subunit).

Thus, when working with the ASIS DDA, you should avoid creating separate trees for subunits. Actually, this is not a
limitation: to create a tree for a subunit, you should also have the source of the parent body available. If in this situation
you create the tree for the parent body, it will contain the full information (including DDA-specific annotation) for all
the subunits that are present. From the other side, a tree created for a single subunit has to contain information about
the parent body, so it has about the same size as the tree for the parent body.

The best way to create trees when using ASIS DDA is to use gnatmake: it will never create separate trees for subunits.

5.3 Different Ways to Define an ASIS Context in ASIS-for-GNAT

The Asis.Ada_Environments.Associate query that defines a Context has the following spec:

procedure Associate
(The_Context : in out Asis.Context;
Name : in Wide_String;
Parameters : in Wide_String := Default_Parameters);

In ASIS-for-GNAT, Name does not have any special meaning, and the properties of the Context are set by ‘options’
specified in the Parameters string:

• How to define a set of tree files making up the Context (-C options);

ASIS-for-GNAT User’s Guide 25 of 62

ASIS-for-GNAT User’s Guide 2017

• How to deal with tree files when opening a Context and when processing ASIS queries (-F options);

• How to process the source files during the consistency check when opening the Context (-S options):

• The search path for tree files making up the Context (-T options);

• The search path for source files used for calling GNAT to create a tree file “on the fly” (-I options);

The association parameters may (and in some cases must) also contain the names of tree files or directories making up
search paths for tree and/or source files. Below is the overview of the Context association parameters in ASIS-for-
GNAT; for full details refer to the ASIS-for-GNAT Reference Manual.

5.3.1 Defining a set of tree files making up a Context

The following options are available:

-C1 ‘One tree’ Context,

defining a Context comprising a single tree file; this tree file name should be given explicitly in the
Parameters string.

-CN ‘N-trees’ Context,

defining a Context comprising a set of tree files; the names of the tree files making up the Context should
be given explicitly in the Parameters string.

-CA ‘All trees’ Context,

defining a Context comprising all the tree files in the tree search path given in the same Parameters string;
if this option is set together with -FM option, ASIS can also create new tree files “on the fly” when processing
queries yielding ASIS Compilation_Units.

The default option is -CA.

Note that for -C1, the Parameters string should contain the name of exactly one tree file. Moreover, if during the
opening of such a Context this tree file could not be successfully read in because of any reason, the Asis_Failed
exception is raised.

5.3.2 Dealing with tree files when opening a Context and processing ASIS queries

The following options are available:

-FT Only pre-created trees are used, no tree file can be created by ASIS.

-FS All the trees considered as making up a given Context are created “on the fly”, whether or not the
corresponding tree file already exists; once created, a tree file may then be reused while the Context remains
open. This option can be set only with -CA option.

-FM Mixed approach: if a needed tree does not exist, the attempt to create it “on the fly” is made. This option can
only be set with -CA option.

The default option is -FT.

Note that the -FS and -FM options go beyond the scope of the official ASIS standard. They may be useful for some
ASIS applications with specific requirements for defining and processing an ASIS Context, but in each case the
ramifications of using such non-standard options should be carefully considered. See the ASIS-for-GNAT Reference
Manual for a detailed description of these option.

26 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

5.3.3 Processing source files during the consistency check

When ASIS reads a tree fule as a part of opening a Context, it checks, that the tree is consistent with the source files
of the Compilation_Units represented by this tree.

The following options are available to control this check:

-SA Source files for all the Compilation_Units belonging to the Context (except the predefined Standard
package) have to be available, and all of them are taken into account for consistency checks when opening the
Context.

-SE Only existing source files for all the Compilation_Units belonging to the Context are taken into account
for consistency checks when opening the Context.

-SN None of the source files from the underlying file system are taken into account when checking the consistency
of the set of tree files making up a Context (that is, no check is made).

The default option is -SA. See Consistency Problems, concerning consistency issues in ASIS-for-GNAT.

5.3.4 Setting search paths

Using the -I, -gnatec and -gnatA options for defining an ASIS Context is similar to using the same optionsfor
gcc. The -T option is used in the same way, for tree files. For full details about the -T and -I options, refer to the
ASIS-for-GNAT Reference Manual. Note that the -T option is used only to locate existing tree files, and it has no
effect for -FS Contexts. On the other hand, the -I option is used only to construct a set of arguments when ASIS
calls GNAT to create a tree file “on the fly”; it has no effect for -FT Contexts, and it cannot be used to tell ASIS
where it should look for source files for ASIS Compilation_Units.

5.4 Consistency Problems

There are two different kinds of consistency problems existing for ASIS-for-GNAT, and both of them can show up
when opening an ASIS Context.

First, a tree file may have been created by another version of GNAT (see the README file about the coordination
between the GNAT and ASIS-for-GNAT versions). This means that there is an ASIS-for-GNAT installation problem.

Second, the tree files may be inconsistent with the existing source files or with each other.

5.4.1 Inconsistent versions of ASIS and GNAT

When ASIS-for-GNAT reads a tree file created by the version of the compiler for which a given version of ASIS-
for-GNAT is not supposed to be used, ASIS treats the situation as an ASIS-for-GNAT installation problem and raises
Program_Error with a corresponding exception message. In this case, Program_Error is not caught by any
ASIS query, and it propagates outside ASIS. Note that the real cause may be an old tree file you have forgotten to
remove when reinstalling ASIS-for-GNAT. This is also considered an installation error.

ASIS uses the tree files created by the GNAT compiler installed on your machine, and the ASIS implementation
includes some compiler components to define and to get access to the corresponding data structures. Therefore, the
version of the GNAT compiler installed on your machine and the version of the GNAT compiler whose sources are
used as a part of the ASIS implementation should be close enough to define the same data structures. We do not
require these versions to be exactly the same, and, by default, when ASIS reads a tree file it only checks for significant
differences. That is, it will accept tree files from previous versions of GNAT as long as it is possible for such files to
be read. In theory, this check is not 100% safe; that is, a tree created by one version of GNAT might not be correctly
processed by ASIS built with GNAT sources taken from another version. But in practice this situation is extremely
unlikely.

ASIS-for-GNAT User’s Guide 27 of 62

ASIS-for-GNAT User’s Guide 2017

An ASIS application may set a strong GNAT version check by providing the -vs parameter for the ASIS
Initialize procedure, see ASIS-for-GNAT Reference Manual for more details. If the strong version check is
set, then only a tree created by exactly the same version of GNAT whose sources are used as a part of the ASIS
implementation can be successfully read in, and Program_Error will be raised otherwise.

Be careful when using a when others exception handler in your ASIS application: do not use it just to catch
non-ASIS exceptions and to ignore them without any analysis.

5.4.2 Consistency of a set of tree and source files

When processing a set of more then one tree file making up the same Context, ASIS may face a consistency problem.
A set of tree files is inconsistent if it contains two trees representing the same compilation unit, and these trees were
created with different versions of the source of this unit. A tree file is inconsistent with a source of a unit represented
by this tree if the source file currently available for the unit differs from the source used to create the tree file.

When opening a Context (via the Asis.Ada_Environments.Open query), ASIS does the following checks
for all the tree files making up the Context:

• If the -SA option is set for the Context, ASIS checks that for every Compilation_Unit represented by
a tree, the source file is available and it is the same as the source file used to create the tree (a tree file contains
references to all the source files used to create this tree file).

• If the -SE option is set for the Context, then if for a Compilation_Unit represented by a tree a source
file is available, ASIS checks that this source is the same as the source used to create the tree. If for a
Compilation_Unit belonging to a Context a source file is not available, ASIS checks that all the tree
files containing this unit were created with the same version of the source of this unit.

• If the -SN option is set for the Context, ASIS checks that all the trees were created from the same versions
of the sources involved. It does not check if any of these sources is available or if this is the same version of the
source that has been used to create the tree files.

If any of these checks fail, the Asis_Failed exception is raised as a result of opening a Context. If the Context
has been successfully opened, you are guaranteed that ASIS will process only consistent sets of tree and source files
until the Context is closed (provided that this set is not changed by some non-ASIS actions).

5.5 Processing Several Contexts at a Time

If your application processes more then one open Context at a time, and if at least one of the Contexts is defined
with an -FS or -FM option, be aware that all the tree files created by ASIS “on the fly” are placed in the current
directory. Therefore, to be on the safe side when processing several opened Contexts at a time, an ASIS application
should have at most one Context defined with an -FS or -FM option. If the application has such a Context, all
the other Contexts should not use tree files located in the current directory.

5.6 Using ASIS with a cross-compiler

If you would like to use ASIS with a cross-compiler, you should use this cross-compiler to create the tree files to be
used for the ASIS Context defined with -FS option. If you would like to use trees created on the fly (that is, to use
a Context defined with the -FS or -FM option), you have to tell ASIS which compiler should be called to perform
this function. There are two ways to do this.

• You can use the --GCC option in the Context definition to specify explicitly the name of the command to be
called to create the trees on the fly

28 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

• You may use the prefix of the name of your ASIS tool to indicate the name of the command to be used to call the
compiler. If the name of your tool contains a hyphen character ‘-‘, for example some_specific-foo, then
ASIS will try to call the command with the name created as a concatenation of the tool name prefix preceding
the rightmost hyphen, the hyphen character itself, and gcc. For example, for some_specific-foo, ASIS
will try to call some_specific-gcc to create the tree file.

The algorithm for defining the name of the command to be used to create trees on the fly is as follows. If the --GCC
option is used in the Context definition and if the name that is the parameter of this option denotes some executable
existing in the path, this executable is used. Otherwise ASIS tries to define the name of the executable from the name
of the ASIS application. If the corresponding executable exists on the path, it is used. Otherwise the standard gcc
installation is used.

ASIS-for-GNAT User’s Guide 29 of 62

ASIS-for-GNAT User’s Guide 2017

This page is intentionally left blank.

30 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CHAPTER

SIX

ASIS INTERPRETER ASISTANT

This chapter describes asistant, an interactive interface to ASIS queries.

6.1 asistant Introduction

The asistant tool allows you to use ASIS without building your own ASIS applications. It provides a simple
command language that allows you to define variables of ASIS types and to assign them values by calling ASIS
queries.

This tool may be very useful while you are learning ASIS: it lets you try different ASIS queries and see the results
immediately. It does not crash when there is an error in calling an ASIS query (such as passing an inappropriate
Element); instead asistant reports an error and lets you try again.

You can also use asistant as a debug and ‘ASIS visualization’ tool in an ASIS application project. If you have
problems finding out which query should be used in a given situation, or why a given query does not work correctly
with a given piece of Ada code, you may use asistant to reconstruct the situation that causes the problems, and
then experiment with ASIS queries.

Though primarily an interactive tool, asistant also can interpret sequences of commands written to a file (called
a ‘script file’ below). The asistant tool can also store in a file the log of an interactive session that can then be
reused as a script file.

The full documentation of asistant may be found in the asistant Users’ Guide (file asistant.ug in the
asistant source directory). Here is a brief overview of asistant usage.

The executable for asistant is created in the asistant source directory as a part of the standard procedure of
installing ASIS-for-GNAT as an Ada library (or it is placed in the GNATPRO/bin directory when installing ASIS
from the binary distribution). Put this executable somewhere on your path (unless you have installed ASIS from the
binary distribution, in which case the executable for asistant has been added to other GNAT executables). Then
type ‘asistant‘ to call asistant in an interactive mode. As a result, the program will output brief information
about itself and then the asistant prompt ‘>‘ will appear:

ASIStant - ASIS Tester And iNTerpreter, v1.2
(C) 1997-2002, Free Software Foundation, Inc.

Asis Version: ASIS 2.0.R

>

Now you can input asistant commands (asistant supports in its command language the same form of
comments as Ada, and names in asistant are not case-sensitive):

>Initialize ("") -- the ASIS Initialize query is called with an
-- empty string as a parameter

ASIS-for-GNAT User’s Guide 31 of 62

ASIS-for-GNAT User’s Guide 2017

>set (Cont) -- the non-initialized variable Cont of the ASIS
-- Context type is created

>Associate (Cont, "", "") -- the ASIS Associate query with two empty
-- strings as parameters is called for Cont

>Open (Cont) -- the ASIS Open query is called for Cont

>set (C_U, Compilation_Unit_Body ("Test", Cont)) -- the variable C_U
-- of the ASIS Compilation_Unit type is created and initialized as
-- the result of the call to the ASIS query Compilation_Unit_Body.
-- As a result, C_U will represent a compilation unit named "Test"
-- and contained in the ASIS Context named Cont

>set (Unit, Unit_Declaration (C_U)) -- the variable Unit of the ASIS
-- Element type is created and initialized as the result of calling
-- the ASIS Unit_Declaration query

>print (Unit) -- as a result of this command, some information about
-- the current value of Unit will be printed (a user can set
-- the desired level of detail of this information):

A_PROCEDURE_BODY_DECLARATION at (1 : 1)-(9 : 9)

-- suppose now, that we do make an error - we call an ASIS query for
-- an inappropriate element:

>set (Elem, Assignment_Expression (Unit))

-- ASIS will raise an exception, asistant will output the ASIS debug
-- information:

Exception is raised by ASIS query ASSIGNMENT_EXPRESSION.
Status : VALUE_ERROR
Diagnosis :
Inappropriate Element Kind in Asis.Statements.Assignment_Expression

-- it does not change any of the existing variables and it prompts
-- a user again:

> ...

6.2 asistant commands

The list of asistant commands given in this section is incomplete; its purpose is only to give a general idea
of asistant‘s capabilities. Standard metalanguage is assumed (i.e., ‘[construct]’ denotes an optional instance of
‘construct‘).

Help [(name)]

Outputs the profile of the ASIS query ‘name‘; when called with no argument, generates general
asistant help information.

Set (name)

32 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

Creates a (non-initialized) variable ‘name‘ of the ASIS Context type.

Set (name, expr) Evaluates the expression ‘expr‘ (it may be any legal asistant expression; a call to some ASIS
query is the most common case in practice) and creates the variable ‘name‘ of the type and with the value of
‘expr‘.

Print (expr)

Evaluates the expression ‘expr‘ and outputs its value (some information may be omitted depending on
the level specified by the PrintDetail command).

Run (filename)

Launches the script from a file filename, reading further commands from it.

Pause

Pauses the current script and turns asistant into interactive mode.

Run Resumes a previously Paused script.

Browse

Switches asistant into step-by-step ASIS tree browsing.

Log (filename)

Opens the file filename for session logging.

Log Closes the current log file.

PrintDetail

Toggles whether the Print command outputs additional information.

Quit [(exit-status)]

Quits asistant.

6.3 asistant variables

The asistant tool lets you define variables with Ada-style (simple) names. Variables can be of any ASIS type and
of conventional Integer, Boolean and String type. All the variables are created and assigned dynamically by
the Set command; there are no predefined variables.

There is no type checking in asistant: each call to a Set command may be considered as creating the first argument
from scratch and initializing it by the value provided by the second argument.

6.4 Browsing an ASIS tree

You perform ASIS tree browsing by invoking the asistant service function Browse. This will disable the
asistant command interpreter and activate the Browser command interpreter. The Browser Q command switches
back into the asistant environment by enabling the asistant command interpreter and disabling the Browser
interpreter.

Browse has a single parameter of Element type, which establishes where the ASIS tree browsing will begin.
Browse returns a result of type Element, namely the Element at which the tree browsing was stopped. Thus, if
you type:

ASIS-for-GNAT User’s Guide 33 of 62

ASIS-for-GNAT User’s Guide 2017

> set (e0, Browse (e1))

you will start ASIS tree browsing from e1; when you finish browsing, e0 will represent the last Element visited
during the browsing.

If you type:

> Browse (e1)

you will be able to browse the ASIS tree, but the last Element of the browsing will be discarded.

Browser displays the ASIS Element it currently points at and expects one of the following commands:

U Go one step up the ASIS tree (equivalent to calling the ASIS Enclosing_Element query);

D Go one step down the ASIS tree, to the left-most component of the current Element

N Go to the right sibling (to the next Element in the ASIS tree hierarchy)

P Go to the left sibling (to the previous Element in the ASIS tree hierarchy)

\k1k2 where k1 is either D or d, and k2 is either T or t. Change the form of displaying the current Element: D
turns ON displaying the debug image, d turns it OFF. T turns ON displaying the text image, t turns it OFF.

<SPACE><query> Call the <query> for the current Element.

Q Go back to the asistant environment; the Browser command interpreter is disabled and the asistant
command interpreter is enabled with the current Element returned as a result of the call to Browse.

Browser immediately interprets the keystroke and displays the new current Element. If the message "Cannot go
in this direction." appears, this means that traversal in this direction from current node is impossible (that
is, the current node is either a terminal Element and it is not possible to go down, or it is the leftmost or the rightmost
component of some Element, and it is not possible to go left or right, or it is the top Element in its enclosing unit
structure and it is not possible to go up).

It is possible to issue some ordinary ASIS queries from inside the Browser (for example, semantic queries). These
queries should accept one parameter of type Element and return Element as a result.

When you press <SPACE>, you are asked to enter the query name. If the query is legal, the current Element is
replaced by the result of the call to the given query with the current Element as a parameter.

6.5 Example

Suppose we have an ASIS Compilation_Unit Demo in the source file demo.adb:

procedure Demo is
function F (I : Integer) return Integer;

function F (I : Integer) return Integer is
begin

return (I + 1);
end F;

N : Integer;

begin

34 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

N := F (3);
end Demo;

Suppose also that the tree for this source is created in the current directory. Below is a sequence of asistant
commands which does process this unit. Explanation is provided via asistant comments.

initialize ("")

-- Create and open a Context comprising all the tree files
-- in the current directory:

Set (Cont)
Associate (Cont, "", "")
Open (Cont)

-- Get a Compilation_Unit (body) named "Demo" from this Context:

Set (CU, Compilation_Unit_Body ("Demo", Cont))

-- Go into the unit structure and get to the expression
-- in the right part of the assignment statements in the unit body:

Set (Unit, Unit_Declaration (CU))
Set (Stmts, Body_Statements (Unit, False))
Set (Stmt, Stmts (1))
Set (Expr, Assignment_Expression (Stmt))

-- Output the debug image and the text image of this expression:

Print (Expr)
Print (Element_Image (Expr))

-- This expression is of A_Function_Call kind, so it's possible to ask
-- for the declaration of the called function:

Set (Corr_Called_Fun, Corresponding_Called_Function (Expr))

-- Print the debug and the text image of the declaration of the called
-- function:

Print (Corr_Called_Fun)
Print (Element_Image (Corr_Called_Fun))

-- Close the asistant session:

Quit

ASIS-for-GNAT User’s Guide 35 of 62

ASIS-for-GNAT User’s Guide 2017

This page is intentionally left blank.

36 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CHAPTER

SEVEN

ASIS APPLICATION TEMPLATES

The subdirectory templates of the ASIS distribution contains a set of Ada source components that can be used as
templates for developing simple ASIS applications. The general idea is that you can easily build an ASIS application
by adding the code performing some specific ASIS analysis in well-defined places in these templates.

Refer to the ASIS tutorial’s solutions for examples of the use of the templates.

For more information see the README file in the templates subdirectory.

ASIS-for-GNAT User’s Guide 37 of 62

ASIS-for-GNAT User’s Guide 2017

This page is intentionally left blank.

38 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CHAPTER

EIGHT

ASIS TUTORIALS

The subdirectory tutorial of the ASIS distribution contains a simple hands-on ASIS tutorial which may be useful
in getting a quick start with ASIS. The tutorial contains a set of simple exercises based on the asistant tool and
on a set of the ASIS Application Templates provided as a part of the ASIS distribution. The complete solutions are
provided for all the exercises, so the tutorial may also be considered as a set of ASIS examples.

For more information see the README file in the tutorial subdirectory.

ASIS-for-GNAT User’s Guide 39 of 62

ASIS-for-GNAT User’s Guide 2017

This page is intentionally left blank.

40 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CHAPTER

NINE

HOW TO BUILD EFFICIENT ASIS APPLICATIONS

This chapter identifies some potential performance issues with ASIS applications and offers some advice on how to
address these issues.

9.1 Tree Swapping as a Performance Issue

If an ASIS Context comprises more then one tree, then ASIS may need to switch between different trees during an
ASIS application run. Switching between trees may require ASIS to repeatedly read in the same set of trees, and this
may slow down an application considerably.

Basically, there are two causes for tree swapping:

• Processing of semantically independent units. Suppose in Context Cont we have units P and Q that do not
depend on each other, and Cont does not contain any third unit depending on both P and Q. This means that
P and Q cannot be represented by the same tree. To obtain information about P, ASIS needs to access the tree
p.adt, and to get some information about Q, ASIS needs q.adt. Therefore, if an application retrieves some
information from P, and then starts processing Q, ASIS has to read q.adt.

• Processing of information from dependent units. A unit U may be present not only in the tree created for
U, but also in all the trees created for units which semantically depend upon U. Suppose we have a library
procedure Proc depending on a library package Pack, and in the set of trees making up our Context we
have trees pack.adt and proc.adt. Suppose we have some Element representing a component of Pack,
when pack.adt was accessed by ASIS, and suppose that because of some other actions undertaken by an
application ASIS changed the tree being accessed to proc.adt. Suppose that now the application wants to
do something with the Element representing some component of Pack and obtained from pack.adt. Even
though the unit Pack is represented by the currently accessed tree proc.adt, ASIS has to switch back to
pack.adt, because all the references into the tree structure kept as a part of the value of this Element are
valid only for pack.adt.

9.2 Queries That Can Cause Tree Swapping

In ASIS-for-GNAT, tree swapping can currently take place only when processing queries defined in:

Asis.Elements
Asis.Declarations
Asis.Definitions
Asis.Statements
Asis.Clauses
Asis.Expressions
Asis.Text

ASIS-for-GNAT User’s Guide 41 of 62

ASIS-for-GNAT User’s Guide 2017

but not for those queries in the above packages that return enumeration or boolean results.

For any instantiation of Asis.Iterator.Traverse_Element, the traversal itself can cause at most one tree
read to get the tree appropriate for processing the Element to be traversed, but procedures provided as actuals for
Pre_Operation and Post_Operation may cause additional tree swappings.

9.3 How to Avoid Unnecessary Tree Swapping

To speed up your application, try to avoid unnecessary tree swapping. The following guidelines may help:

• Try to minimize the set of tree files processed by your application. In particular, try to avoid having separate
trees created for subunits.

Minimizing the set of tree files processed by the application also cuts down the time needed for opening a
Context. Try to use gnatmake to create a suitable set of tree files covering an Ada program for processing
by an ASIS application.

• Choose the Context definition appropriate to your application. For example, use ‘one tree’ Context (-C1)
for applications that are limited to processing single units (such as a pretty printer or gnatstub). By processing
the tree file created for this unit, ASIS can get all the syntactic and semantic information about this unit. Using
the ‘one tree’ Context definition, an application has only one tree file to read when opening a Context,
and no other tree file will be read during the application run. An ‘N-trees’ Context is a natural extension
of ‘one tree’ Context for applications that know in advance which units will be processed, but opening a
Context takes longer, and ASIS may switch among different tree files during an application run. Use ‘all
trees’ Context only for applications which are not targeted at processing a specific unit or a specific set of
units, but are supposed to process all the available units, or when an application has to process a large system
consisting of a many units. When using an application based on an ‘all trees’ Context, use the approach for
creating tree files described above to minimize a set of tree files to be processed.

• In your ASIS application, try to avoid switching between processing units or sets of units with no dependencies
among them; such a switching will cause tree swapping.

• If you are going to analyze a library unit having both a spec and a body, start by obtaining an Element from
the body of this unit. This will set the tree created for the body as the tree accessed by ASIS, and this tree will
allow both the spec and the body of this unit to be processed without tree swapping.

• To see a ‘tree swapping profile’ of your application use the -dt debug flag when initializing ASIS
(Asis.Implementation.Initialize ("-dt")). The information returned may give you some hints
on how to avoid tree swapping.

9.4 Using gnatmake to Create Tree Files

To create a suitable set of tree files, you may use gnatmake. GNAT creates an ALI file for every successful
compilation, whether or not code has been generated. Therefore, it is possible to run gnatmake with the -gnatct
option; this will create the set of tree files for all the compilation units needed in the resulting program. Below we will
use gnatmake to create a set of tree files for a complete Ada program (partition). You may adapt this approach to an
incomplete program or to a partition without a main subprogram, applying gnatmake to some of its components.

Using gnatmake for creating tree files has another advantage: it will keep tree files consistent among themselves and
with the sources.

There are two different ways to use gnatmake to create a set of tree files.

First, suppose you have object, ALI and tree files for your program in the same directory, and
main_subprogram.adb contains the body of the main subprogram. If you run gnatmake as

42 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

$ gnatmake -f -c -gnatct ... main_subprogram.adb

this will create the trees representing the full program for which main_subprogram is the main procedure. The
trees will be created ‘from scratch’; that is, if some tree files already exist, they will be recreated. This is because
gnatmake is being called with the -f option (which means ‘force recompilation’). Usng gnatmake without the
-f option for creating tree files is not reliable if your tree files are in the same directory as the object files, because
object and tree files ‘share’ the same set of ALI files. If the object files exist and are consistent with the ALI and
source files, the source will not be recompiled for creating a tree file unless the -f option is set.

A different approach is to combine the tree files and the associated ALI files in a separate directory, and to use this
directory only for keeping the tree files and maintaining their consistency with source files. Thus, the object files and
their associated ALI files should be in another directory. In this case, by invoking gnatmake through:

$ gnatmake -c -gnatct ... main_subprogram.adb

(that is, without forcing recompilation) you will still obtain a full and consistent set of tree files representing your
program, but in this case the existing tree files will be reused.

See the next chapter for specific details related to Ada compilation units belonging to precompiled Ada libraries.

ASIS-for-GNAT User’s Guide 43 of 62

ASIS-for-GNAT User’s Guide 2017

This page is intentionally left blank.

44 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CHAPTER

TEN

PROCESSING AN ADA LIBRARY BY AN ASIS-BASED TOOL

When an Ada unit to be processed by some ASIS-based tool makes use of an Ada library, you need to be aware of the
following features of using Ada libraries with GNAT:

• An Ada library is a collection of precompiled Ada components. The sources of the Ada components belonging
to the library are present, but if your program uses some components from a library, these components are
not recompiled by gnatmake (except in circumstances described below). For example, Ada.Text_IO is not
recompiled when you invoke gnatmake on a unit that withs Ada.Text_IO.

• According to the GNAT source-based compilation model, the spec of a library component is processed when
an application unit depending on such a component is compiled, but the body of the library component is not
processed. As a result, if you invoke gnatmake to create a set of tree files covering a given program, and if this
program references an entity from an Ada library, then the set of tree files created by such a call will contain
only specs, but not bodies for library components.

• Any GNAT installation contains the GNAT Run-Time Library (RTL) as a precompiled Ada library. In some
cases, a GNAT installation may contain some other libraries (such as Win32Ada Binding on a Windows GNAT
platform).

• In ASIS-for-GNAT, there is no standard way to define whether a given Compilation_Unit
belongs to some precompiled Ada library other than the GNAT Run-Time Library (some
heuristics may be added to Asis.Extensions). ASIS-for-GNAT classifies (by means of the
Asis.Compilation_Units.Unit_Origin query) a unit as A_Predefined_Unit, if it is from the
Run-Time Library and if it is mentioned in the Ada Reference Manual, Annex A, Paragraph 2 as an Ada 95
predefined unit; a unit is classified as An_Implementation_Unit if is belongs to Run-Time Library but is
not mentioned in the paragraph just cited. Components of Ada libraries other than the Run-Time Library are
always classified as An_Application_Unit;

• It is possible to recompile the components of the Ada libraries used by a given program. To do this, you have
to invoke gnatmake for this program with the -a option. If you create a set of tree files for your program
by invoking gnatmake with the -a option, the resulting set of tree files will contain all the units needed by this
program to make up a complete partition.

Therefore, there are two possibilities for an ASIS-based tool if processing (or avoiding processing) of Ada libraries is
important for the functionality of the tool:

• If the tool is not to process components of Ada libraries, then a set of tree files for this tool
may be created by invoking gnatmake without the -a option (this is the usual way of using
gnatmake). When the tool encounters a Compilation_Unit which represents a spec of some
library unit, and for which Asis.Compilation_Units.Is_Body_Required returns True, but
Asis.Compilation_Units.Corresponding_Body yields a result of A_Nonexistent_Body
kind, then the tool may conclude that this library unit belongs to some precompiled Ada library.

ASIS-for-GNAT User’s Guide 45 of 62

ASIS-for-GNAT User’s Guide 2017

• If a tool needs to process all the Ada compilation units making up a program, then a set of tree files for this
program should be created by invoking gnatmake with the -a option.

You can use Asis.Compilation_units.Unit_Origin to filter out Run-Time Library components.

46 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CHAPTER

ELEVEN

COMPILING, BINDING, AND LINKING APPLICATIONS WITH
ASIS-FOR-GNAT

The recommended way of building ASIS applications is to define for an application a project file that depends on the
main ASIS project file asis.gpr. All you have to do is to add a with clause

with "asis";

to the application project file. After that you can build an executable for an application using gprbuild in the usual
way.

ASIS-for-GNAT User’s Guide 47 of 62

ASIS-for-GNAT User’s Guide 2017

This page is intentionally left blank.

48 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CHAPTER

TWELVE

ASIS-FOR-GNAT WARNINGS

The ASIS definition specifies the situations when certain ASIS-defined exceptions should be raised, and ASIS-for-
GNAT conforms to these rules.

ASIS-for-GNAT also generates warnings if it considers some situation arising during the ASIS query processing to be
potentially wrong, and if the ASIS definition does not require raising an exception. Usually this occurs with actual or
potential problems in an implementation-specific part of ASIS, such as providing implementation-specific parameters
to the queries Initialize, Finalize and Associate or opening a Context.

There are three warning modes in ASIS-for-GNAT:

default Warning messages are output to Standard_Error.

suppress Warning messages are suppressed.

treat as error A warning is treated as an error by ASIS-for-GNAT: instead of sending a message to
Standard_Error, ASIS-for-GNAT raises Asis_Failed and converts the warning message into the
ASIS Diagnosis string. ASIS Error Status depends on the cause of the warning.

The ASIS-for-GNAT warning mode may be set when initializing the ASIS implementation. The -ws parameter of
Asis.Implementation.Initialize query suppresses warnings, the -we parameter of this query sets treating
all the warnings as errors. When set, the warning mode remains the same for all Contexts processed until ASIS-for-
GNAT has completed.

ASIS-for-GNAT User’s Guide 49 of 62

ASIS-for-GNAT User’s Guide 2017

This page is intentionally left blank.

50 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CHAPTER

THIRTEEN

EXCEPTION HANDLING AND REPORTING INTERNAL BUGS

According to the ASIS Standard, only ASIS-defined exceptions can be propagated from ASIS queries. The same holds
for the ASIS Extensions queries supported by ASIS-for-GNAT.

If a non-ASIS exception is raised during the processing of an ASIS or ASIS extension query, this symptom reflects an
internal implementation problem. Under such a circumstance, by default the ASIS query will output some diagnostic
information to Standard_Error and then exit to the OS; that is, the execution of the ASIS application is aborted.

In order to allow the execution of an ASIS-based program to continue even in case of such internal
ASIS implementation errors, you can change the default behavior by supplying appropriate parameters to
Asis.Implementation.Initialize. See ASIS-for-GNAT Reference Manual for more details.

ASIS-for-GNAT User’s Guide 51 of 62

ASIS-for-GNAT User’s Guide 2017

This page is intentionally left blank.

52 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

CHAPTER

FOURTEEN

FILE NAMING CONVENTIONS AND APPLICATION NAME SPACE

Any ASIS application depends on the ASIS interface components; an ASIS application programmer thus needs to be
alert to (and to avoid) clashes with the names of these components.

ASIS-for-GNAT includes the full specification of the ASIS Standard, and also adds the following children and
grandchildren of the root Asis package:

• Asis.Extensions hierarchy (the source file names start with asis-extensions) defines some useful
ASIS extensions, see ASIS Reference Manual for more details.

• Asis.Set_Get (the source files asis-set_get.ad(b|s) respectively) contains the access and update
subprograms for the implementation of the main ASIS abstractions defined in Asis.

• Asis.Text.Set_Get (the source files asis-text-set_get.ad(b|s) respectively) contains the
access and update subprograms for the implementation of the ASIS abstractions defined in Asis.Text;

All other ASIS-for-GNAT Ada implementation components belong to the hierarchy rooted at the package A4G (which
comes from ‘ASIS-for-GNAT’).

ASIS-for-GNAT also incorporates the following GNAT components as a part of the ASIS implementation:

Alloc
Atree
Casing
Csets
Debug
Einfo
Elists
Fname
Gnatvsn
Hostparm
Krunch
Lib

Lib.List
Lib.Sort

Namet
Nlists
Opt
Output
Repinfo
Scans
Sinfo
Sinput
Snames
Stand
Stringt
Table

ASIS-for-GNAT User’s Guide 53 of 62

ASIS-for-GNAT User’s Guide 2017

Tree_In
Tree_Io
Types
Uintp
Uname
Urealp
Widechar

Therefore, in your ASIS application you should not add children at any level of the Asis or A4G hierarchies, and you
should avoid using any name from the list of the GNAT component names above.

All Ada source files making up the ASIS implementation for GNAT (including the GNAT components being a part of
ASIS-for-GNAT) follow the GNAT file name conventions without any name ‘krunch’ing.

54 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

APPENDIX

A

GNU FREE DOCUMENTATION LICENSE

Version 1.3, 3 November 2008

Copyright 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The Document, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

ASIS-for-GNAT User’s Guide 55 of 62

http://fsf.org/

ASIS-for-GNAT User’s Guide 2017

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, that is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called Opaque.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains
XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific
section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

56 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

3. State on the Title page the name of the publisher of the Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

6. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

8. Include an unaltered copy of this License.

9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

13. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

14. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

15. Preserve any Warranty Disclaimers.

ASIS-for-GNAT User’s Guide 57 of 62

ASIS-for-GNAT User’s Guide 2017

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified
Version by various parties—for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one
section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

58 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section
4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights
under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License “or any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide
which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that
anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained
in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published
under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC,
(1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

ASIS-for-GNAT User’s Guide 59 of 62

http://www.gnu.org/copyleft/

ASIS-for-GNAT User’s Guide 2017

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any
time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with ... Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with
the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two
alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

60 of 62 ASIS-for-GNAT User’s Guide

ASIS-for-GNAT User’s Guide 2017

INDEX

Symbols
-GCC option, 28
-gnatc option, 24
-gnatct option, 15, 23, 42
-gnatt option, 23, 24
-lasis option, 47
:file:adt extension for tree files, 23

A
A4G package, 53
Ada predefined library (processing by an ASIS tool), 45
Ada_Environments.Close procedure, 14
All trees Context, 26
ASIS application templates, 37
ASIS Example, 11, 34
ASIS Iterator, 20
ASIS overview, 17
Asis package, 9, 18, 53
ASIS package hierarchy, 18
ASIS Performance, 41
ASIS queries, 9, 17–19, 23, 31
ASIS queries (dynamic typing), 20
ASIS Tutorials, 39
ASIS-for-GNAT, 14, 23–25, 27, 31, 47
Asis.Ada_Environments package, 18
Asis.Ada_Environments.Associate query, 25
Asis.Ada_Environments.Associate query (example), 11
Asis.Ada_Environments.Close procedure (example), 11
Asis.Ada_Environments.Containers package, 17
Asis.Ada_Environments.Dissociate procedure, 14
Asis.Ada_Environments.Dissociate procedure (example),

11
Asis.Ada_Environments.Open procedure, 13
Asis.Ada_Environments.Open procedure (example), 11
Asis.Ada_Environments.Open query, 28
ASIS.Clauses package, 18
Asis.Compilation_Units package, 18, 20
Asis.Compilation_Units.Corresponding_Body function,

45
Asis.Compilation_Units.Is_Body_Required function, 45
Asis.Compilation_Units.Relations package, 18

Asis.Compilation_Units.Unit_Full_Name query
(example), 11

Asis.Compilation_Units.Unit_Kind query (example), 11
Asis.Compilation_units.Unit_Origin, 46
Asis.Compilation_Units.Unit_Origin query, 45
Asis.Compilation_Units.Unit_Origin query (example), 11
Asis.Declarations package, 18
Asis.Definitions package, 18
Asis.Elements package, 18, 20
Asis.Elements.Enclosing_Element query, 19
Asis.Elements.Statement_Kind query, 20
Asis.Errors package, 19
Asis.Errors.Error_Kinds type, 20
Asis.Errors.Value_Error error status, 20
Asis.Exceptions package, 19, 20
Asis.Exceptions.ASIS_Failed exception (example), 11
Asis.Exceptions.ASIS_Inappropriate_Compilation_Unit

exception, 20
Asis.Exceptions.ASIS_Inappropriate_Compilation_Unit

exception (example), 11
Asis.Exceptions.ASIS_Inappropriate_Context exception

(example), 11
Asis.Exceptions.ASIS_Inappropriate_Element exception,

20
Asis.Expressions package, 18
Asis.Extensions package, 45, 53
Asis.Ids package, 18
Asis.Implementation package, 18
Asis.Implementation.Associate procedure, 13
Asis.Implementation.Diagnosis query, 20
Asis.Implementation.Finalize procedure, 14
Asis.Implementation.Finalize procedure (example), 11
Asis.Implementation.Initialize procedure, 13, 42, 49
Asis.Implementation.Initialize procedure (example), 11
Asis.Implementation.Permissions package, 18
Asis.Implementation.Set_Status procedure, 20
Asis.Implementation.Status function (example), 11
Asis.Implementation.Status query, 20
Asis.Iterator.Traverse_Element generic procedure, 20, 42
Asis.Set_Get package, 53
Asis.Statements package, 18
Asis.Text package, 17, 18

ASIS-for-GNAT User’s Guide 61 of 62

ASIS-for-GNAT User’s Guide 2017

Asis.Text.Set_Get package, 53
Asis_Failed exception, 26, 28, 49
asistant, 31
asistant commands, 32
asistant variables, 33
AST (Abstract Syntax Tree), 23, 24

B
Browse (asistant command), 33
Browser (asistant utility), 33

C
Compilation_Unit type, 13, 14, 17, 18, 20
Compilation_Unit type (example), 11
Consistency problems, 27
Container type, 17
Context type, 13–15, 17, 18, 23, 25
Context type (example), 11

D
Data Decomposition Annex (DDA), 25
Diagnosis string, 20, 49

E
Element type, 13, 14, 17, 18, 20
Enclosing_Element query, 19, 34
Erroneous execution, 13, 14, 25
Error Handling, 20

G
gnatmake (for creating tree files), 42

H
Help (asistant command), 32

I
Id type, 18

L
Line type, 14, 17
Log (asistant command), 33

N
N-trees Context, 26

O
One-tree Context, 26

P
Pause (asistant command), 33
Print (asistant command), 33
PrintDetail (asistant command), 33

Program_Error exception, 27

Q
Quit (asistant command), 33

R
Run (asistant command), 33

S
Script file (for asistant), 31, 33
Semantic ASIS queries, 19
Set (asistant command), 33
Span type, 18
Spec (definition of term), 11
Storage_Error (propagated from ASIS queries), 20
Structural ASIS queries, 19
Subunits and the Data Decomposition Annex, 25

T
Tasking and error information, 20
Templates (for ASIS applications), 37
Tools (that can use ASIS), 9
Tree file, 15, 16, 23–25, 27, 28
Tree swapping (ASIS performance issue), 25, 41, 42

W
Warnings (from ASIS-for-GNAT), 49

62 of 62 ASIS-for-GNAT User’s Guide

	About This Guide
	Introduction
	What Is ASIS?
	ASIS Scope — Which Kinds of Tools Can Be Built with ASIS?

	Getting Started
	The Problem
	An ASIS Application that Solves the Problem
	Required Sequence of Calls
	Building the Executable for an ASIS application
	Preparing Data for an ASIS Application — Generating Tree Files
	Running an ASIS Application

	ASIS Overview
	Main ASIS Abstractions
	ASIS Package Hierarchy
	Structural and Semantic Queries
	ASIS Error Handling Policy
	Dynamic Typing of ASIS Queries
	ASIS Iterator
	How to Navigate through the Asis Package Hierarchy

	ASIS Context
	ASIS Context and Tree Files
	Creating Tree Files for Use by ASIS
	Creating Trees for Data Decomposition Annex

	Different Ways to Define an ASIS Context in ASIS-for-GNAT
	Defining a set of tree files making up a Context
	Dealing with tree files when opening a Context and processing ASIS queries
	Processing source files during the consistency check
	Setting search paths

	Consistency Problems
	Inconsistent versions of ASIS and GNAT
	Consistency of a set of tree and source files

	Processing Several Contexts at a Time
	Using ASIS with a cross-compiler

	ASIS Interpreter asistant
	asistant Introduction
	asistant commands
	asistant variables
	Browsing an ASIS tree
	Example

	ASIS Application Templates
	ASIS Tutorials
	How to Build Efficient ASIS Applications
	Tree Swapping as a Performance Issue
	Queries That Can Cause Tree Swapping
	How to Avoid Unnecessary Tree Swapping
	Using gnatmake to Create Tree Files

	Processing an Ada Library by an ASIS-Based Tool
	Compiling, Binding, and Linking Applications with ASIS-for-GNAT
	ASIS-for-GNAT Warnings
	Exception Handling and Reporting Internal Bugs
	File Naming Conventions and Application Name Space
	GNU Free Documentation License
	Index

