
GNATcheck Reference Manual

Coding Standard Verifier

The GNAT Ada Compiler
GNAT GPL Edition, Version 2013

Configuration level: 204126
Date: 2013/03/12

AdaCore

Copyright c© 2009-2012, AdaCore
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with the Invariant Sections
being “GNU Free Documentation License”, with the Front-Cover Texts being
“GNATcheck Reference Manual”, and with no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

About This Manual

About This Manual
The gnatcheck tool in GNAT can be used to enforce coding conventions by
analyzing Ada source programs with respect to a set of rules supplied at tool
invocation. This manual describes the complete set of predefined rules that
gnatcheck can take as input.

What This Manual Contains
This manual contains a description of gnatcheck, an ASIS-based utility that
checks properties of Ada source files according to a given set of semantic rules
•

Chapter 1 [Introduction], page 3, gives the general overview of the
gnatcheck tool
Chapter 2 [Format of the Report File], page 5, describes the structure of
the report file generated by gnatcheck

Chapter 3 [General gnatcheck Switches], page 7, describes switches control
the general gnatcheck behavior
Chapter 4 [gnatcheck Rule Options], page 9, describes options used to con-
trol a set of rules to be checked by gnatcheck

Chapter 5 [Adding the Results of Compiler Checks to gnatcheck Output],
page 11, explains how the results of the check performed by the GNAT
compiler can be added to the report generated by gnatcheck

Chapter 6 [Project-Wide Checks], page 13, explains how to apply gnatcheck
to all the sources of your project
Chapter 7 [Rule exemption], page 15, explains how to turn off a rule check
for a specified fragment of a source file
Chapter 8 [Predefined Rules], page 17, contains a description of each pre-
defined gnatcheck rule, organized into categories.
Chapter 9 [Example of gnatcheck Usage], page 49, contains a full example
of gnatcheck usage
Appendix A [List of Rules], page 53, gives an alphabetized list of all prede-
fined rules, for ease of reference.

The name of each rule (the “rule identifier”) denotes the condition that is de-
tected and flagged by gnatcheck. The rule identifier is used as a parameter of
the ‘+R’ or ‘-R’ switch to gnatcheck.

What You Should Know Before Reading This Manual
You should be familiar with the Ada language and with the usage of GNAT in
general; please refer to the GNAT User’s Guide.

1

Chapter 1: Introduction

1 Introduction
The gnatcheck tool is an ASIS-based utility that checks properties of Ada source
files according to a given set of semantic rules.

In order to check compliance with a given rule, gnatcheckhas to semantically
analyze the Ada sources. Therefore, checks can only be performed on legal Ada
units. Moreover, when a unit depends semantically upon units located outside
the current directory, the source search path has to be provided when calling
gnatcheck, either through a specified project file or through gnatcheck switches
as described below.

A number of rules are predefined in gnatcheck and are described later in
this chapter. You can also add new rules, by modifying the gnatcheck code and
rebuilding the tool. In order to add a simple rule making some local checks, a
small amount of straightforward ASIS-based programming is usually needed.

Project support for gnatcheck is provided by the GNAT driver (see The GNAT
Driver and Project Files section in GNAT User’s Guide).

Invoking gnatcheck on the command line has the form:
$ gnatcheck [switches] {filename}

[-files={arg list filename}]
[-cargs gcc switches] -rules rule options

where
• switches specify the general tool options
• Each filename is the name (including the extension) of a source file to

process. “Wildcards” are allowed, and the file name may contain path
information.

• Each arg_list_filename is the name (including the extension) of a text
file containing the names of the source files to process, separated by spaces
or line breaks.

• gcc_switches is a list of switches for gcc. They will be passed on to all
compiler invocations made by gnatcheck to generate the ASIS trees. Here
you can provide ‘-I’ switches to form the source search path, and use the
‘-gnatec’ switch to set the configuration file, use the ‘-gnat05’ switch if
sources should be compiled in Ada 2005 mode etc.

• rule_options is a list of options for controlling a set of rules to be checked
by gnatcheck (see Chapter 4 [gnatcheck Rule Options], page 9).

Either a ‘filename’ or an ‘arg_list_filename’ must be supplied.

3

Chapter 2: Format of the Report File

2 Format of the Report File
The gnatcheck tool outputs on ‘stderr’ all messages concerning rule viola-
tions except if running in quiet mode. It also creates a text file that contains
the complete report of the last gnatcheck run. By default this file is named
‘gnatcheck.out’ and it is located in the current directory; the ‘-o’ option can be
used to change the name and/or location of the report file. This report contains:
• general details of the gnatcheck run: date and time of the run, the version

of the tool that has generated this report, full parameters of the gnatcheck
invocation, reference to the list of checked sources and applied rules (coding
standard);

• summary of the run (number of checked sources and detected violations);
• list of exempted coding standard violations;
• list of non-exempted coding standard violations;
• list of problems in the definition of exemption sections;
• list of language violations (compile-time errors) detected in processed

sources;

5

Chapter 3: General gnatcheck Switches

3 General gnatcheck Switches
The following switches control the general gnatcheck behavior
‘--version’

Display Copyright and version, then exit disregarding all other op-
tions.

‘--help’ Display usage, then exit disregarding all other options.
‘-a’ Process all units including those with read-only ALI files such as

those from the GNAT Run-Time library.
‘-dx’ Activate internal debugging switches. x is a letter or digit, or string

of letters or digits, which specifies the type of debugging outputs
desired. Normally these are used only for internal development or
system debugging purposes. You can find full documentation for
these switches in the body of the ASIS_UL.Debug unit in the ASIS
Utility Library source file ‘asis_ul-debug.adb’.

‘-dd’ Activate a specific debug switch that does not generate any debug
output but turns on a progress indicator. This switch also changes
the format of the diagnostic messages sent to ‘stderr’ by adding
a string check: between the source location and the text of the
diagnosis. This switch is mostly used when gnatcheck is called from
GPS.

‘-h’ List all the rules checked by the given gnatcheck version.
‘-jnnnn’

Use nnnn processed to carry out the tree creations (internal repre-
sentations of the argument sources). On a multiprocessor machine
this speeds up processing of big sets of argument sources.

‘-l’ Use full source locations references in the report file. For a construct
from a generic instantiation a full source location is a chain from the
location of this construct in the generic unit to the place where this
unit is instantiated.

‘-log’ Duplicate all the output sent to ‘stderr’ into a log file. The log file
is named ‘gnatcheck.log’ and is located in the current directory.

‘-mnnnn’ Maximum number of diagnostics to be sent to ‘stdout’, where nnnn
is in the range 0. . .1000; the default value is 500. Zero means that
there is no limitation on the number of diagnostic messages to be
output.

‘-q’ Quiet mode. All the diagnostics about rule violations are placed in
the gnatcheck report file only, without duplication on ‘stdout’.

7

GNATcheck Reference Manual

‘-s’ Short format of the report file (no version information, no list of
applied rules, no list of checked sources is included)

‘--show-rule’
Add the corresponding rule name to the diagnosis generated for its
violation.

‘--include-file=file’
Append the content of the specified text file to the report file

‘-t’ Print out execution time.

‘-v’ Verbose mode; gnatcheck generates version information and then a
trace of sources being processed.

‘-o report_file’
Set name of report file to report_file .

‘--write-rules=template_file’
Write to template_file the template rule file that contains all the
rules currently implemented in gnatcheck turned off. A user may
edit this template file manually to get his own coding standard file.

8

Chapter 4: gnatcheck Rule Options

4 gnatcheck Rule Options
The following options control the processing performed by gnatcheck.

‘+Rrule_id[:param]’
Turn on the check for a specified rule with the specified parameter,
if any. rule_id must be the identifier of one of the currently im-
plemented rules (use ‘-h’ for the list of implemented rules). Rule
identifiers are not case-sensitive. The param item must be a string
representing a valid parameter(s) for the specified rule. If it contains
any space characters then this string must be enclosed in quotation
marks.

‘-Rrule_id[:param]’
Turn off the check for a specified rule with the specified parameter,
if any.

‘-from=rule_option_filename’
Read the rule options from the text file rule_option_filename,
referred to as a “coding standard file” below.

The default behavior is that all the rule checks are disabled.
If more than one rule option is specified for the same rule, these options

are summed together. If a new option contradicts the rule settings specified by
previous options for this rule, the new option overrides the previous settings.

A coding standard file is a text file that contains a set of rule options described
above. The file may contain empty lines and Ada-style comments (comment
lines and end-of-line comments). There can be several rule options on a single
line (separated by a space).

A coding standard file may reference other coding standard files by includ-
ing more ‘-from=rule_option_filename’ options, each such option being re-
placed with the content of the corresponding coding standard file during pro-
cessing. In case a cycle is detected (that is, ‘rule_file_1’ reads rule options
from ‘rule_file_2’, and ‘rule_file_2’ reads (directly or indirectly) rule options
from ‘rule_file_1’), processing fails with an error message.

9

Chapter 5: Adding the Results of Compiler Checks to gnatcheck Output

5 Adding the Results of Compiler Checks to
gnatcheck Output

The gnatcheck tool can include in the generated diagnostic messages and in
the report file the results of the checks performed by the compiler. Though
disabled by default, this effect may be obtained by using ‘+R’ with the following
rule identifiers and parameters:

‘Restrictions’
To record restrictions violations (which are performed by the com-
piler if the pragma Restrictions or Restriction_Warnings are
given), use the Restrictions rule with the same parameters as
pragma Restrictions or Restriction_Warnings.

‘Style_Checks’
To record compiler style checks (see Style Checking section in GNAT
User’s Guide), use the Style_Checks rule. This rule takes a param-
eter in one of the following forms:
• All_Checks, which enables the standard style checks corre-

sponding to the ‘-gnatyy’ GNAT style check option, or
• a string with the same structure and semantics as the string_

LITERAL parameter of the GNAT pragma Style_Checks (for
further information about this pragma, see Section “Pragma
Style Checks” in GNAT Reference Manual).

For example, the +RStyle_Checks:O rule option activates the com-
piler style check that corresponds to -gnatyO style check option.

‘Warnings’
To record compiler warnings (see Warning Message Control section
in GNAT User’s Guide), use the Warnings rule with a parameter that
is a valid static string expression argument of the GNAT pragma
Warnings (for further information about this pragma, see Section
“Pragma Warnings” in GNAT Reference Manual). Note that in case
of gnatcheck ’s’ parameter, that corresponds to the GNAT ‘-gnatws’
option, disables all the specific warnings, but not suppresses the
warning mode, and ’e’ parameter, corresponding to ‘-gnatwe’ that
means "treat warnings as errors", does not have any effect.

To disable a specific restriction check, use -RRestrictions gnatcheck option
with the corresponding restriction name as a parameter. -R is not available for
Style_Checks and Warnings options, to disable warnings and style checks, use
the corresponding warning and style options.

11

Chapter 6: Project-Wide Checks

6 Project-Wide Checks
In order to perform checks on all units of a given project, you can use the GNAT
driver along with the ‘-P’ option:

gnat check -Pproj -rules -from=my_rules

If the project proj depends upon other projects, you can perform checks on the
project closure using the ‘-U’ option:

gnat check -Pproj -U -rules -from=my_rules

Finally, if not all the units are relevant to a particular main program in the
project closure, you can perform checks for the set of units needed to create a
given main program (unit closure) using the ‘-U’ option followed by the name of
the main unit:

gnat check -Pproj -U main -rules -from=my_rules

13

Chapter 7: Rule exemption

7 Rule exemption
One of the most useful applications of gnatcheck is to automate the enforcement
of project-specific coding standards, for example in safety-critical systems where
particular features must be restricted in order to simplify the certification effort.
However, it may sometimes be appropriate to violate a coding standard rule,
and in such cases the rationale for the violation should be provided in the source
program itself so that the individuals reviewing or maintaining the program can
immediately understand the intent.

The gnatcheck tool supports this practice with the notion of a “rule exemp-
tion” covering a specific source code section. Normally rule violation messages
are issued both on ‘stderr’ and in a report file. In contrast, exempted violations
are not listed on ‘stderr’; thus users invoking gnatcheck interactively (e.g. in
its GPS interface) do not need to pay attention to known and justified violations.
However, exempted violations along with their justification are documented in
a special section of the report file that gnatcheck generates.

7.1 Using pragma Annotate to Control Rule
Exemption

Rule exemption is controlled by pragma Annotate when its first argument is
“gnatcheck”. The syntax of gnatcheck’s exemption control annotations is as
follows:

pragma Annotate (gnatcheck, exemption control, Rule Name, [justification]);

exemption control ::= Exempt_On | Exempt_Off

Rule Name ::= string_literal

justification ::= string_literal

When a gnatcheck annotation has more than four arguments, gnatcheck issues
a warning and ignores the additional arguments. If the additional arguments
do not follow the syntax above, gnatcheck emits a warning and ignores the
annotation.

The Rule_Name argument should be the name of some existing gnatcheck
rule. Otherwise a warning message is generated and the pragma is ignored. If
Rule_Name denotes a rule that is not activated by the given gnatcheck call, the
pragma is ignored and no warning is issued. The exception from this rule is that
exemption sections for Warnings rule are fully processed when Restrictions
rule is activated.

A source code section where an exemption is active for a given rule is delim-
ited by an exempt_on and exempt_off annotation pair:

pragma Annotate (gnatcheck, Exempt_On, Rule_Name, "justification");

15

GNATcheck Reference Manual

-- source code section

pragma Annotate (gnatcheck, Exempt_Off, Rule_Name);

7.2 gnatcheck Annotations Rules
• An “Exempt Off” annotation can only appear after a corresponding “Ex-

empt On” annotation.
• Exempted source code sections are only based on the source location of the

annotations. Any source construct between the two annotations is part of
the exempted source code section.

• Exempted source code sections for different rules are independent. They
can be nested or intersect with one another without limitation. Creating
nested or intersecting source code sections for the same rule is not allowed.

• Malformed exempted source code sections are reported by a warning, and
the corresponding rule exemptions are ignored.

• When an exempted source code section does not contain at least one viola-
tion of the exempted rule, a warning is emitted on ‘stderr’.

• If an “Exempt On” annotation pragma does not have a matching “Ex-
empt Off” annotation pragma in the same compilation unit, then the ex-
emption for the given rule is ignored and a warning is issued.

16

Chapter 8: Predefined Rules

8 Predefined Rules
The description of the rules currently implemented in gnatcheck is given in
this chapter. The rule identifier is used as a parameter of gnatcheck’s ‘+R’ or
‘-R’ switches.

Be aware that most of these rules apply to specialized coding requirements
developed by individual users and may well not make sense in other environ-
ments. In particular, there are many rules that conflict with one another. Proper
usage of gnatcheck involves selecting the rules you wish to apply by looking at
your independently developed coding standards and finding the corresponding
gnatcheck rules.

If not otherwise specified, a rule does not do any check for the results of
generic instantiations.

8.1 Style-Related Rules
The rules in this section may be used to enforce various feature usages consis-
tent with good software engineering, for example as described in Ada 95 Quality
and Style.

8.1.1 Tasking
The rules in this subsection may be used to enforce various feature usages
related to concurrency.

8.1.1.1 Multiple_Entries_In_Protected_Definitions

Flag each protected definition (i.e., each protected object/type declaration) that
defines more than one entry. Diagnostic messages are generated for all the
entry declarations except the first one. An entry family is counted as one entry.
Entries from the private part of the protected definition are also checked.

This rule has no parameters.

8.1.1.2 Volatile_Objects_Without_Address_Clauses

Flag each volatile object that does not have an address clause.
The following check is made: if the pragma Volatile is applied to a data

object or to its type, then an address clause must be supplied for this object.
This rule does not check the components of data objects, array components

that are volatile as a result of the pragma Volatile_Components, or objects
that are volatile because they are atomic as a result of pragmas Atomic or
Atomic_Components.

Only variable declarations, and not constant declarations, are checked.
This rule has no parameters.

17

GNATcheck Reference Manual

8.1.2 Object Orientation
The rules in this subsection may be used to enforce various feature usages
related to Object-Oriented Programming.

8.1.2.1 Deep_Inheritance_Hierarchies

Flags a tagged derived type declaration or an interface type declaration if
its depth (in its inheritance hierarchy) exceeds the value specified by the ‘N’
rule parameter. Types in generic instantiations which violate this rule are also
flagged; generic formal types are not flagged. This rule also does not flag private
extension declarations. In the case of a private extension, the corresponding
full declaration is checked.

In most cases, the inheritance depth of a tagged type or interface type is
defined as 0 for a type with no parent and no progenitor, and otherwise as 1 +
max of the depths of the immediate parent and immediate progenitors. If the
declaration of a formal derived type has no progenitor, or if the declaration of
a formal interface type has exactly one progenitor, then the inheritance depth
of such a formal derived/interface type is equal to the inheritance depth of its
parent/progenitor type, otherwise the general rule is applied.

If the rule flags a type declaration inside the generic unit, this means that
this type declaration will be flagged in any instantiation of the generic unit.
But if a type is derived from a format type or has a formal progenitor and it is
not flagged at the place where it is defined in a generic unit, it may or may not
be flagged in instantiation, this depends of the inheritance depth of the actual
parameters.

This rule has the following (mandatory) parameter for the ‘+R’ option:

N Integer not less than -1 specifying the maximal allowed depth of
any inheritance hierarchy. If the rule parameter is set to -1, the rule
flags all the declarations of tagged and interface types.

8.1.2.2 Direct_Calls_To_Primitives

Flag any non-dispatching call to a dispatching primitive operation, except for :
• a call to the corresponding primitive of the type’s immediate ancestor. (This

occurs in the common idiom where a primitive subprogram for a tagged
type directly calls the same primitive subprogram of the type’s immediate
ancestor.)

• a call to a primitive of an untagged private type, even though the full type
may be tagged, when the call is made at a place where the view of the type
is untagged.

This rule has the following (optional) parameters for the ‘+R’ option:

18

Chapter 8: Predefined Rules

Except Constructors
Do not flag non-dispatching calls to functions if the function has a
controlling result and no controlling parameters (in a traditional
OO sense such functions may be considered as constructors)

8.1.2.3 Too_Many_Parents

Flag any tagged type declaration, interface type declaration, single task dec-
laration or single protected declaration that has more than ‘N’ parents, where
‘N’ is a parameter of the rule. A parent here is either a (sub)type denoted by
the subtype mark from the parent subtype indication (in case of a derived type
declaration), or any of the progenitors from the interface list (if any).

This rule has the following (mandatory) parameters for the ‘+R’ option:

N Positive integer specifying the maximal allowed number of par-
ents/progenitors.

8.1.2.4 Visible_Components

Flag all the type declarations located in the visible part of a library package
or a library generic package that can declare a visible component. A visible
component can be declared in a record definition which appears on its own or
as part of a record extension. The record definition is flagged even if it contains
no components.

Record definitions located in private parts of library (generic) packages or in
local (generic) packages are not flagged. Record definitions in private packages,
in package bodies, and in the main subprogram body are not flagged.

This rule has no parameters.

8.1.3 Portability
The rules in this subsection may be used to enforce various feature usages that
support program portability.

8.1.3.1 Forbidden_Attributes

Flag each use of the specified attributes. The attributes to be detected are
named in the rule’s parameters.

This rule has the following parameters:
• For the ‘+R’ option

Attribute Designator
Adds the specified attribute to the set of attributes to be detected
and sets the detection checks for all the specified attributes ON.
If Attribute Designator does not denote any attribute defined

19

GNATcheck Reference Manual

in the Ada standard or in Section “Implementation Defined At-
tributes” in GNAT Reference Manual, it is treated as the name
of unknown attribute.

GNAT All the GNAT-specific attributes are detected; this sets the de-
tection checks for all the specified attributes ON.

ALL All attributes are detected; this sets the rule ON.
• For the ‘-R’ option

Attribute Designator
Removes the specified attribute from the set of attributes to be
detected without affecting detection checks for other attributes.
If Attribute Designator does not correspond to any attribute de-
fined in the Ada standard or in Section “Implementation Defined
Attributes” in GNAT Reference Manual, this option is treated
as turning OFF detection of all unknown attributes.

GNAT Turn OFF detection of all GNAT-specific attributes

ALL Clear the list of the attributes to be detected and turn the rule
OFF.

Parameters are not case sensitive. If Attribute Designator does not have the
syntax of an Ada identifier and therefore can not be considered as a (part of an)
attribute designator, a diagnostic message is generated and the corresponding
parameter is ignored. (If an attribute allows a static expression to be a part of
the attribute designator, this expression is ignored by this rule.)

When more than one parameter is given in the same rule option, the param-
eters must be separated by commas.

If more than one option for this rule is specified for the gnatcheck call, a new
option overrides the previous one(s).

The ‘+R’ option with no parameters turns the rule ON, with the set of at-
tributes to be detected defined by the previous rule options. (By default this set
is empty, so if the only option specified for the rule is ‘+RForbidden_Attributes’
(with no parameter), then the rule is enabled, but it does not detect anything).
The ‘-R’ option with no parameter turns the rule OFF, but it does not affect the
set of attributes to be detected.

8.1.3.2 Forbidden_Pragmas

Flag each use of the specified pragmas. The pragmas to be detected are named
in the rule’s parameters.

This rule has the following parameters:
• For the ‘+R’ option

20

Chapter 8: Predefined Rules

Pragma Name
Adds the specified pragma to the set of pragmas to be
checked and sets the checks for all the specified pragmas
ON. Pragma Name is treated as a name of a pragma. If it
does not correspond to any pragma name defined in the Ada
standard or to the name of a GNAT-specific pragma defined in
Section “Implementation Defined Pragmas” in GNAT Reference
Manual, it is treated as the name of unknown pragma.

GNAT All the GNAT-specific pragmas are detected; this sets the checks
for all the specified pragmas ON.

ALL All pragmas are detected; this sets the rule ON.
• For the ‘-R’ option

Pragma Name
Removes the specified pragma from the set of pragmas
to be checked without affecting checks for other pragmas.
Pragma Name is treated as a name of a pragma. If it does
not correspond to any pragma defined in the Ada standard
or to any name defined in Section “Implementation Defined
Pragmas” in GNAT Reference Manual, this option is treated as
turning OFF detection of all unknown pragmas.

GNAT Turn OFF detection of all GNAT-specific pragmas

ALL Clear the list of the pragmas to be detected and turn the rule
OFF.

Parameters are not case sensitive. If Pragma Name does not have the syntax
of an Ada identifier and therefore can not be considered as a pragma name, a
diagnostic message is generated and the corresponding parameter is ignored.

When more than one parameter is given in the same rule option, the param-
eters must be separated by a comma.

If more than one option for this rule is specified for the gnatcheck call, a new
option overrides the previous one(s).

The ‘+R’ option with no parameters turns the rule ON with the set of pragmas
to be detected defined by the previous rule options. (By default this set is empty,
so if the only option specified for the rule is ‘+RForbidden_Pragmas’ (with no
parameter), then the rule is enabled, but it does not detect anything). The ‘-R’
option with no parameter turns the rule OFF, but it does not affect the set of
pragmas to be detected.

Note that in case when the rule is enabled with ALL parameter, then the
rule will flag also pragmas Annotate used to exempt rules, see Chapter 7 [Rule
exemption], page 15. Even if you exempt this ‘Forbidden_Pragmas’ rule then

21

GNATcheck Reference Manual

the pragma Annotate that closes the exemption section will be flagged as non-
exempted. To avoid this, turn off the check for pragma Annotate by using
‘-RForbidden_Pragmas:Annotate’ rule option.

8.1.3.3 Implicit_SMALL_For_Fixed_Point_Types

Flag each fixed point type declaration that lacks an explicit representation
clause to define its ’Small value. Since ’Small can be defined only for ordinary
fixed point types, decimal fixed point type declarations are not checked.

This rule has no parameters.

8.1.3.4 No_Scalar_Storage_Order_Specified

Flag each record type declaration, record extension declaration, and untagged
derived record type declaration if a record representation clause that has at
least one component clause applies to it (or an ancestor), but neither the type nor
any of its ancestors has an explicitly specified Scalar Storage Order attribute.

This rule has no parameters.

8.1.3.5 Predefined_Numeric_Types

Flag each explicit use of the name of any numeric type or subtype defined in
package Standard.

The rationale for this rule is to detect when the program may depend on
platform-specific characteristics of the implementation of the predefined nu-
meric types. Note that this rule is overly pessimistic; for example, a program
that uses String indexing likely needs a variable of type Integer. Another
example is the flagging of predefined numeric types with explicit constraints:

subtype My_Integer is Integer range Left .. Right;

Vy_Var : My_Integer;

This rule detects only numeric types and subtypes defined in Standard. The
use of numeric types and subtypes defined in other predefined packages (such
as System.Any_Priority or Ada.Text_IO.Count) is not flagged

This rule has no parameters.

8.1.3.6 Separate_Numeric_Error_Handlers

Flags each exception handler that contains a choice for the predefined
Constraint_Error exception, but does not contain the choice for the predefined
Numeric_Error exception, or that contains the choice for Numeric_Error, but
does not contain the choice for Constraint_Error.

This rule has no parameters.

22

Chapter 8: Predefined Rules

8.1.4 Program Structure
The rules in this subsection may be used to enforce feature usages related to
program structure.

8.1.4.1 Deeply_Nested_Generics

Flag a generic declaration nested in another generic declaration if the nesting
level of the inner generic exceeds the value specified by the ‘N’ rule parameter.
The nesting level is the number of generic declarations that enclose the given
(generic) declaration. Formal packages are not flagged by this rule.

This rule has the following (mandatory) parameters for the ‘+R’ option:

N Positive integer specifying the maximum nesting level for a generic
declaration.

8.1.4.2 Local_Packages

Flag all local packages declared in package and generic package specs. Local
packages in bodies are not flagged.

This rule has no parameters.

8.1.4.3 Non_Visible_Exceptions

Flag constructs leading to the possibility of propagating an exception out of the
scope in which the exception is declared. Two cases are detected:
• An exception declaration in a subprogram body, task body or block state-

ment is flagged if the body or statement does not contain a handler for that
exception or a handler with an others choice.

• A raise statement in an exception handler of a subprogram body, task body
or block statement is flagged if it (re)raises a locally declared exception. This
may occur under the following circumstances:
− it explicitly raises a locally declared exception, or
− it does not specify an exception name (i.e., it is simply raise;) and the

enclosing handler contains a locally declared exception in its exception
choices.

Renamings of local exceptions are not flagged.
This rule has no parameters.

8.1.4.4 Raising_External_Exceptions

Flag any raise statement, in a program unit declared in a library package
or in a generic library package, for an exception that is neither a predefined
exception nor an exception that is also declared (or renamed) in the visible part
of the package.

23

GNATcheck Reference Manual

This rule has no parameters.

8.1.5 Programming Practice
The rules in this subsection may be used to enforce feature usages that relate
to program maintainability.

8.1.5.1 Anonymous_Arrays

Flag all anonymous array type definitions (by Ada semantics these can only
occur in object declarations).

This rule has no parameters.

8.1.5.2 Enumeration_Ranges_In_CASE_Statements

Flag each use of a range of enumeration literals as a choice in a case statement.
All forms for specifying a range (explicit ranges such as A .. B, subtype marks
and ’Range attributes) are flagged. An enumeration range is flagged even if
contains exactly one enumeration value or no values at all. A type derived from
an enumeration type is considered as an enumeration type.

This rule helps prevent maintenance problems arising from adding an enu-
meration value to a type and having it implicitly handled by an existing case
statement with an enumeration range that includes the new literal.

This rule has no parameters.

8.1.5.3 Exceptions_As_Control_Flow

Flag each place where an exception is explicitly raised and handled in the same
subprogram body. A raise statement in an exception handler, package body,
task body or entry body is not flagged.

The rule has no parameters.

8.1.5.4 Exits_From_Conditional_Loops

Flag any exit statement if it transfers the control out of a for loop or a while
loop. This includes cases when the exit statement applies to a FOR or while
loop, and cases when it is enclosed in some for or while loop, but transfers the
control from some outer (unconditional) loop statement.

The rule has no parameters.

8.1.5.5 EXIT_Statements_With_No_Loop_Name

Flag each exit statement that does not specify the name of the loop being
exited.

The rule has no parameters.

24

Chapter 8: Predefined Rules

8.1.5.6 GOTO_Statements

Flag each occurrence of a goto statement.
This rule has no parameters.

8.1.5.7 Improper_Returns

Flag each explicit return statement in procedures, and multiple return state-
ments in functions. Diagnostic messages are generated for all return state-
ments in a procedure (thus each procedure must be written so that it returns
implicitly at the end of its statement part), and for all return statements in
a function after the first one. This rule supports the stylistic convention that
each subprogram should have no more than one point of normal return.

This rule has no parameters.

8.1.5.8 Non_Short_Circuit_Operators

Flag all calls to predefined and and or operators for any boolean type. Calls
to user-defined and and or and to operators defined by renaming declarations
are not flagged. Calls to predefined and and or operators for modular types or
boolean array types are not flagged.

This rule has no parameters.

8.1.5.9 OTHERS_In_Aggregates

Flag each use of an others choice in extension aggregates. In record and
array aggregates, an others choice is flagged unless it is used to refer to all
components, or to all but one component.

If, in case of a named array aggregate, there are two associations, one with
an others choice and another with a discrete range, the others choice is flagged
even if the discrete range specifies exactly one component; for example, (1..1
=> 0, others => 1).

This rule has no parameters.

8.1.5.10 OTHERS_In_CASE_Statements

Flag any use of an others choice in a case statement.
This rule has no parameters.

8.1.5.11 OTHERS_In_Exception_Handlers

Flag any use of an others choice in an exception handler.
This rule has no parameters.

25

GNATcheck Reference Manual

8.1.5.12 Overly_Nested_Control_Structures

Flag each control structure whose nesting level exceeds the value provided in
the rule parameter.

The control structures checked are the following:
• if statement
• case statement
• loop statement
• selective accept statement
• timed entry call statement
• conditional entry call statement
• asynchronous select statement

The rule has the following parameter for the ‘+R’ option:

N Positive integer specifying the maximal control structure nesting
level that is not flagged

If the parameter for the ‘+R’ option is not specified or if it is not a positive integer,
‘+R’ option is ignored.

If more than one option is specified for the gnatcheck call, the later option
and new parameter override the previous one(s).

8.1.5.13 Positional_Actuals_For_Defaulted_Generic_
Parameters

Flag each generic actual parameter corresponding to a generic formal parameter
with a default initialization, if positional notation is used.

This rule has no parameters.

8.1.5.14 Positional_Actuals_For_Defaulted_Parameters

Flag each actual parameter to a subprogram or entry call where the corre-
sponding formal parameter has a default expression, if positional notation is
used.

This rule has no parameters.

8.1.5.15 Positional_Components

Flag each array, record and extension aggregate that includes positional nota-
tion.

This rule has no parameters.

26

Chapter 8: Predefined Rules

8.1.5.16 Positional_Generic_Parameters

Flag each positional actual generic parameter except for the case when the
generic unit being instantiated has exactly one generic formal parameter.

This rule has no parameters.

8.1.5.17 Positional_Parameters

Flag each positional parameter notation in a subprogram or entry call, except
for the following:
• Parameters of calls to of prefix or infix operators are not flagged
• If the called subprogram or entry has only one formal parameter, the pa-

rameter of the call is not flagged;
• If a subprogram call uses the Object.Operation notation, then

− the first parameter (that is, Object) is not flagged;
− if the called subprogram has only two parameters, the second parame-

ter of the call is not flagged;
This rule has no parameters.

8.1.5.18 Recursive_Subprograms

Flags specs (and bodies that act as specs) of recursive subprograms. A
subprogram is considered as recursive in a given context if there exists a chain of
direct calls starting from the body of, and ending at this subprogram within this
context. A context is provided by the set of Ada sources specified as arguments
of a given gnatcheck call. Neither dispatching calls nor calls through access-to-
subprograms are considered as direct calls by this rule.

Generic subprograms and subprograms detected in generic units are not
flagged. Recursive subprograms in expanded generic instantiations are flagged.

This rule has no parameters.

8.1.5.19 Unconditional_Exits

Flag unconditional exit statements.
This rule has no parameters.

8.1.5.20 Unnamed_Blocks_And_Loops

Flag each unnamed block statement and loop statement.
The rule has no parameters.

8.1.5.21 USE_PACKAGE_Clauses

Flag all use clauses for packages; use type clauses are not flagged.
This rule has no parameters.

27

GNATcheck Reference Manual

8.1.6 Readability
The rules described in this subsection may be used to enforce feature usages
that contribute towards readability.

8.1.6.1 Identifier_Casing

Flag each defining identifier that does not have a casing corresponding to the
kind of entity being declared. All defining names are checked. For the defining
names from the following kinds of declarations a special casing scheme can be
defined:
• type and subtype declarations;
• enumeration literal specifications (not including character literals) and

function renaming declarations if the renaming entity is an enumeration
literal;

• constant and number declarations (including object renaming declarations
if the renamed object is a constant);

• exception declarations and exception renaming declarations.
The rule may have the following parameters for ‘+R’:

Type=casing scheme
Specifies casing for names from type and subtype declarations.

Enum=casing scheme
Specifies the casing of defining enumeration literals and for the
defining names in a function renaming declarations if the renamed
entity is an enumeration literal.

Constant=casing scheme
Specifies the casing for defining names from constants and named
number declarations, including the object renaming declaration if
the renamed object is a constant

Exception=casing scheme
Specifies the casing for names from exception declarations and ex-
ception renaming declarations.

Others=casing scheme
Specifies the casing for all defining names for which no special casing
scheme is specified. If this parameter is not set, the casing for the
entities that do not correspond to the specified parameters is not
checked.

Exclude=dictionary file
Specifies casing exceptions.

Where:

28

Chapter 8: Predefined Rules

casing scheme ::= upper|lower|mixed

upper means that the defining identifier should be upper-case. lower means that
the defining identifier should be lower-case mixed means that the first defining
identifier letter and the first letter after each underscore should be upper-case,
and all the other letters should be lower-case

If a defining identifier is from a declaration for which a specific casing scheme
can be set, but the corresponding parameter is not specified for the rule, then
the casing scheme defined by Others parameter is used to check this identifier.
If Others parameter also is not set, the identifier is not checked.

dictionary file is the name of the text file that contains casing exceptions.
The way how this rule is using the casing exception dictionary file is consistent
with using the casing exception dictionary in the GNAT pretty-printer gnatpp,
see GNAT User’s Guide.

There are two kinds of exceptions:
identifier If a dictionary file contains an identifier, then each occurrence of

that (defining) identifier in the checked source should use the casing
specified included in dictionary file

wildcard A wildcard has the following syntax
wildcard ::= *simple identifier* |

*simple identifier |

simple identifier*
simple identifier ::= letter{letter or digit}

simple_identifier specifies the casing of subwords (the term “sub-
word” is used below to denote the part of a name which is delimited
by “ ” or by the beginning or end of the word and which does not con-
tain any “ ” inside). A wildcard of the form simple_identifier* de-
fines the casing of the first subword of a defining name to check, the
wildcard of the form *simple_identifier specifies the casing of the
last subword, and the wildcard of the form *simple_identifier*
specifies the casing of any subword.
If for a defining identifier some of its subwords can be mapped onto
wildcards, but some other cannot, the casing of the identifier sub-
words that are not mapped onto wildcards from casing exception
dictionary is checked against the casing scheme defined for the cor-
responding entity.

If some identifier is included in the exception dictionary both as a whole
identifier and can be mapped onto some wildcard from the dictionary, then it is
the identifier and not the wildcard that is used to check the identifier casing.

If more than one dictionary file is specified, or a dictionary file contains more
than one exception variant for the same identifier, the new casing exception
overrides the previous one.

29

GNATcheck Reference Manual

Casing check against dictionary file(s) has a higher priority than checks
against the casing scheme specified for a given entity/declaration kind.

‘+R’ option should contain at least one parameter.
There is no parameter for ‘-R’ option, it just turns the rule off.

8.1.6.2 Identifier_Prefixes

Flag each defining identifier that does not have a prefix corresponding to the
kind of declaration it is defined by. The defining names in the following kinds
of declarations are checked:
• type and subtype declarations (task, protected and access types are treated

separately);
• enumeration literal specifications (not including character literals) and

function renaming declarations if the renaming entity is an enumeration
literal;

• exception declarations and exception renaming declarations;
• constant and number declarations (including object renaming declarations

if the renamed object is a constant).

Defining names declared by single task declarations or single protected decla-
rations are not checked by this rule.

The defining name from the full type declaration corresponding to a private
type declaration or a private extension declaration is never flagged. A defining
name from an incomplete type declaration is never flagged.

The defining name from a subprogram renaming-as-body declaration is never
flagged.

For a deferred constant, the defining name in the corresponding full constant
declaration is never flagged.

The defining name from a body that is a completion of a program unit decla-
ration or a proper body of a subunit is never flagged.

The defining name from a body stub that is a completion of a program unit
declaration is never flagged.

Note that the rule checks only defining names. Usage name occurrence are
not checked and are never flagged.

The rule may have the following parameters:
• For the ‘+R’ option:

Type=string
Specifies the prefix for a type or subtype name.

30

Chapter 8: Predefined Rules

Concurrent=string
Specifies the prefix for a task and protected type/subtype name.
If this parameter is set, it overrides for task and protected types
the prefix set by the Type parameter.

Access=string
Specifies the prefix for an access type/subtype name. If this
parameter is set, it overrides for access types the prefix set by
the Type parameter.

Class_Access=string
Specifies the prefix for the name of an access type/subtype that
points to some class-wide type. If this parameter is set, it over-
rides for such access types and subtypes the prefix set by the
Type or Access parameter.

Subprogram_Access=string
Specifies the prefix for the name of an access type/subtype that
points to a subprogram. If this parameter is set, it overrides for
such access types/subtypes the prefix set by the Type or Access
parameter.

Derived=string1:string2
Specifies the prefix for a type that is directly derived from a
given type or from a subtype thereof. string1 should be a full
expanded Ada name of the ancestor type (starting from the full
expanded compilation unit name), string2 defines the prefix to
check. If this parameter is set, it overrides for types that are
directly derived from the given type the prefix set by the Type
parameter.

Constant=string
Specifies the prefix for defining names from constants and
named number declarations, including the object renaming dec-
laration if the renamed object is a constant

Enum=string
Specifies the prefix for defining enumeration literals and for
the defining names in a function renaming declarations if the
renamed entity is an enumeration literal.

Exception=string
Specifies the prefix for defining names from exception declara-
tions and exception renaming declarations.

Exclusive
Check that only those kinds of names for which specific prefix is
defined have that prefix (e.g., only type/subtype names have pre-

31

GNATcheck Reference Manual

fix T , but not variable or package names), and flag all defining
names that have any of the specified prefixes but do not belong
to the kind of entities this prefix is defined for. By default the
exclusive check mode is ON.

For the ‘-R’ option:

All_Prefixes
Removes all the prefixes specified for the identifier prefix checks,
whether by default or as specified by other rule parameters and
disables the rule.

Type Removes the prefix specified for type/subtype names. This does
not remove prefixes specified for specific type kinds and does
not disable checks for these specific kinds.

Concurrent
Removes the prefix specified for task and protected types.

Access Removes the prefix specified for access types. This does not re-
move prefixes specified for specific access types (access to sub-
programs and class-wide access)

Class_Access
Removes the prefix specified for access types pointing to class-
wide types.

Subprogram_Access
Removes the prefix specified for access types pointing to sub-
programs.

Derived Removes prefixes specified for derived types that are directly
derived from specific types.

Constant Removes the prefix specified for constant and number names
and turns off the check for these names.

Exception
Removes the prefix specified for exception names and turns off
the check for exception names.

Enum Removes the prefix specified for enumeration literal names and
turns off the check for them.

Exclusive
Turns of the check that only names of specific kinds of entities
have prefixes specified for these kinds.

If more than one parameter is used, parameters must be separated by commas.

32

Chapter 8: Predefined Rules

If more than one option is specified for the gnatcheck invocation, a new option
overrides the previous one(s).

The ‘+RIdentifier_Prefixes’ option (with no parameter) enables checks for
all the name prefixes specified by previous options used for this rule. If no prefix
is specified, the rule is not enabled.

The ‘-RIdentifier_Prefixes’ option (with no parameter) disables all the
checks but keeps all the prefixes specified by previous options used for this rule.

There is no default prefix setting for this rule. All checks for name prefixes
are case-sensitive

If any error is detected in a rule parameter, that parameter is ignored. In
such a case the options that are set for the rule are not specified.

8.1.6.3 Identifier_Suffixes

Flag the declaration of each identifier that does not have a suffix corresponding
to the kind of entity being declared. The following declarations are checked:
• type declarations
• subtype declarations
• constant declarations (but not number declarations)
• package renaming declarations (but not generic package renaming decla-

rations)
This rule may have parameters. When used without parameters, the rule
enforces the following checks:
• type-defining names end with _T, unless the type is an access type, in which

case the suffix must be _A

• constant names end with _C

• names defining package renamings end with _R

Defining identifiers from incomplete type declarations are never flagged.
For a private type declaration (including private extensions), the defining

identifier from the private type declaration is checked against the type suffix
(even if the corresponding full declaration is an access type declaration), and the
defining identifier from the corresponding full type declaration is not checked.
For a deferred constant, the defining name in the corresponding full constant
declaration is not checked.

Defining names of formal types are not checked.
The rule may have the following parameters:

• For the ‘+R’ option: unless the parameter is Default, then only the explicitly
specified suffix is checked, and no defaults are used.

Default Sets the default listed above for all the names to be checked.

33

GNATcheck Reference Manual

Type_Suffix=string
Specifies the suffix for a type name.

Access_Suffix=string
Specifies the suffix for an access type name. If this param-
eter is set, it overrides for access types the suffix set by the
Type_Suffix parameter. For access types, string may have the
following format: suffix1(suffix2). That means that an access
type name should have the suffix1 suffix except for the case
when the designated type is also an access type, in this case the
type name should have the suffix1 & suffix2 suffix.

Class_Access_Suffix=string
Specifies the suffix for the name of an access type that points to
some class-wide type. If this parameter is set, it overrides for
such access types the suffix set by the Type_Suffix or Access_
Suffix parameter.

Class_Subtype_Suffix=string
Specifies the suffix for the name of a subtype that denotes a
class-wide type.

Constant_Suffix=string
Specifies the suffix for a constant name.

Renaming_Suffix=string
Specifies the suffix for a package renaming name.

• For the ‘-R’ option:

All_Suffixes
Remove all the suffixes specified for the identifier suffix checks,
whether by default or as specified by other rule parameters. All
the checks for this rule are disabled as a result.

Type_Suffix
Removes the suffix specified for types. This disables checks
for types but does not disable any other checks for this rule
(including the check for access type names if Access_Suffix is
set).

Access_Suffix
Removes the suffix specified for access types. This disables
checks for access type names but does not disable any other
checks for this rule. If Type_Suffix is set, access type names
are checked as ordinary type names.

34

Chapter 8: Predefined Rules

Class_Access_Suffix
Removes the suffix specified for access types pointing to class-
wide type. This disables specific checks for names of access
types pointing to class-wide types but does not disable any other
checks for this rule. If Type_Suffix is set, access type names
are checked as ordinary type names. If Access_Suffix is set,
these access types are checked as any other access type name.

Class_Subtype_Suffix=string
Removes the suffix specified for subtype names. This disables
checks for subtype names but does not disable any other checks
for this rule.

Constant_Suffix
Removes the suffix specified for constants. This disables checks
for constant names but does not disable any other checks for
this rule.

Renaming_Suffix
Removes the suffix specified for package renamings. This dis-
ables checks for package renamings but does not disable any
other checks for this rule.

If more than one parameter is used, parameters must be separated by commas.
If more than one option is specified for the gnatcheck invocation, a new

option overrides the previous one(s).
The ‘+RIdentifier_Suffixes’ option (with no parameter) enables checks for

all the name suffixes specified by previous options used for this rule.
The ‘-RIdentifier_Suffixes’ option (with no parameter) disables all the

checks but keeps all the suffixes specified by previous options used for this rule.
The string value must be a valid suffix for an Ada identifier (after trimming

all the leading and trailing space characters, if any). Parameters are not case
sensitive, except the string part.

If any error is detected in a rule parameter, the parameter is ignored. In
such a case the options that are set for the rule are not specified.

8.1.6.4 Misnamed_Controlling_Parameters

Flag a declaration of a dispatching operation, if the first parameter is not a
controlling one and its name is not This (the check for parameter name is not
case-sensitive). Declarations of dispatching functions with a controlling result
and no controlling parameter are never flagged.

A subprogram body declaration, subprogram renaming declaration, or sub-
program body stub is flagged only if it is not a completion of a prior subprogram
declaration.

35

GNATcheck Reference Manual

This rule has no parameters.

8.1.6.5 Name_Clashes

Check that certain names are not used as defining identifiers. The names that
should not be used as identifiers must be listed in a dictionary file that is a
rule parameter. A defining identifier is flagged if it is included in a dictionary
file specified as a rule parameter, the check is not case-sensitive. More then
one dictionary file can be specified as the rule parameter, in this case the rule
checks defining identifiers against the union of all the identifiers from all the
dictionary files provided as the rule parameters.

This rule has the following (mandatory) parameters for the ‘+R’ option:

dictionary file
The name of a dictionary file.

This rule is enabled by default, but without setting any corresponding dic-
tionary file(s); thus the default effect is to do no checks.

A dictionary file is a plain text file. The maximum line length for this file
is 1024 characters. If the line is longer than this limit, extra characters are
ignored.

Each line can be either an empty line, a comment line, or a line containing
a list of identifiers separated by space or HT characters. A comment is an
Ada-style comment (from -- to end-of-line). Identifiers must follow the Ada
syntax for identifiers. A line containing one or more identifiers may end with a
comment.

8.1.6.6 Uncommented_BEGIN_In_Package_Bodies

Flags each package body with declarations and a statement part that does
not include a trailing comment on the line containing the begin keyword; this
trailing comment needs to specify the package name and nothing else. The
begin is not flagged if the package body does not contain any declarations.

If the begin keyword is placed on the same line as the last declaration or
the first statement, it is flagged independently of whether the line contains a
trailing comment. The diagnostic message is attached to the line containing
the first statement.

This rule has no parameters.

8.1.7 Source Code Presentation
This subsection is a placeholder; there are currently no rules in this category.

36

Chapter 8: Predefined Rules

8.2 Feature Usage Rules
The rules in this section can be used to enforce specific usage patterns for a
variety of language features.

8.2.1 Abstract_Type_Declarations

Flag all declarations of abstract types. For an abstract private type, both the
private and full type declarations are flagged.

This rule has no parameters.

8.2.2 Anonymous_Subtypes

Flag all uses of anonymous subtypes (except cases when subtype indication is
a part of a record component definition, and this subtype indication depends on
a discriminant). A use of an anonymous subtype is any instance of a subtype
indication with a constraint, other than one that occurs immediately within a
subtype declaration. Any use of a range other than as a constraint used imme-
diately within a subtype declaration is considered as an anonymous subtype.

The rule does not flag ranges in the component clauses from a record repre-
sentation clause, because the language rules do not allow to use subtype names
there.

An effect of this rule is that for loops such as the following are flagged (since
1..N is formally a “range”):

for I in 1 .. N loop

...

end loop;

Declaring an explicit subtype solves the problem:
subtype S is Integer range 1..N;

...

for I in S loop

...

end loop;

This rule has no parameters.

8.2.3 Blocks

Flag each block statement.
This rule has no parameters.

8.2.4 Complex_Inlined_Subprograms

Flag a subprogram (or generic subprogram, or instantiation of a subprogram)
if pragma Inline is applied to it and at least one of the following conditions is
met:

37

GNATcheck Reference Manual

• it contains at least one complex declaration such as a subprogram body,
package, task, protected declaration, or a generic instantiation (except in-
stantiation of Ada.Unchecked_Conversion);

• it contains at least one complex statement such as a loop, a case or an if
statement;

• the number of statements exceeds a value specified by the ‘N’ rule parame-
ter;

Subprogram renamings shall also been considered.
This rule has the following (mandatory) parameter for the ‘+R’ option:
N Positive integer specifying the maximum allowed total number of

statements in the subprogram body.

8.2.5 Controlled_Type_Declarations

Flag all declarations of controlled types. A declaration of a private type is
flagged if its full declaration declares a controlled type. A declaration of a
derived type is flagged if its ancestor type is controlled. Subtype declarations
are not checked. A declaration of a type that itself is not a descendant of a type
declared in Ada.Finalization but has a controlled component is not checked.

This rule has no parameters.

8.2.6 Declarations_In_Blocks

Flag all block statements containing local declarations. A declare block with
an empty declarative part or with a declarative part containing only pragmas
and/or use clauses is not flagged.

This rule has no parameters.

8.2.7 Deeply_Nested_Inlining

Flag a subprogram (or generic subprogram) if pragma Inline has been applied
to it, and it calls another subprogram to which pragma Inline applies, resulting
in potential nested inlining, with a nesting depth exceeding the value specified
by the ‘N’ rule parameter.

This rule requires the global analysis of all the compilation units that are
gnatcheck arguments; such analysis may affect the tool’s performance.

This rule has the following (mandatory) parameter for the ‘+R’ option:
N Positive integer specifying the maximum level of nested calls to

subprograms to which pragma Inline has been applied.

8.2.8 Default_Parameters

Flag all default expressions in parameters specifications. All parameter speci-
fications are checked: in subprograms (including formal, generic and protected

38

Chapter 8: Predefined Rules

subprograms) and in task and protected entries (including accept statements
and entry bodies).

This rule has no parameters.

8.2.9 Discriminated_Records

Flag all declarations of record types with discriminants. Only the declarations
of record and record extension types are checked. Incomplete, formal, private,
derived and private extension type declarations are not checked. Task and
protected type declarations also are not checked.

This rule has no parameters.

8.2.10 Explicit_Full_Discrete_Ranges

Flag each discrete range that has the form A’First .. A’Last.
This rule has no parameters.

8.2.11 Float_Equality_Checks

Flag all calls to the predefined equality operations for floating-point types. Both
“=” and “/=” operations are checked. User-defined equality operations are not
flagged, nor are uses of operators that are renamings of the predefined equality
operations. Also, the “=” and “/=” operations for fixed-point types are not flagged.

This rule has no parameters.

8.2.12 Function_Style_Procedures

Flag each procedure that can be rewritten as a function. A procedure can be
converted into a function if it has exactly one parameter of mode out and no
parameters of mode in out. Procedure declarations, formal procedure declara-
tions, and generic procedure declarations are always checked. Procedure bodies
and body stubs are flagged only if they do not have corresponding separate dec-
larations. Procedure renamings and procedure instantiations are not flagged.

If a procedure can be rewritten as a function, but its out parameter is of a
limited type, it is not flagged.

Protected procedures are not flagged. Null procedures also are not flagged.
This rule has no parameters.

8.2.13 Generics_In_Subprograms

Flag each declaration of a generic unit in a subprogram. Generic declarations
in the bodies of generic subprograms are also flagged. A generic unit nested
in another generic unit is not flagged. If a generic unit is declared in a local
package that is declared in a subprogram body, the generic unit is flagged.

This rule has no parameters.

39

GNATcheck Reference Manual

8.2.14 Implicit_IN_Mode_Parameters

Flag each occurrence of a formal parameter with an implicit in mode. Note that
access parameters, although they technically behave like in parameters, are
not flagged.

This rule has no parameters.

8.2.15 Improperly_Located_Instantiations

Flag all generic instantiations in library-level package specs (including library
generic packages) and in all subprogram bodies.

Instantiations in task and entry bodies are not flagged. Instantiations in the
bodies of protected subprograms are flagged.

This rule has no parameters.

8.2.16 Library_Level_Subprograms

Flag all library-level subprograms (including generic subprogram instantia-
tions).

This rule has no parameters.

8.2.17 Non_Qualified_Aggregates

Flag each non-qualified aggregate. A non-qualified aggregate is an aggregate
that is not the expression of a qualified expression. A string literal is not
considered an aggregate, but an array aggregate of a string type is considered
as a normal aggregate. Aggregates of anonymous array types are not flagged.

This rule has no parameters.

8.2.18 Numeric_Literals

Flag each use of a numeric literal in an index expression, and in any circum-
stance except for the following:
• a literal occurring in the initialization expression for a constant declaration

or a named number declaration, or
• an integer literal that is less than or equal to a value specified by the ‘N’

rule parameter.
• a literal occurring in a declaration in case the ‘Statements_Only’ rule pa-

rameter is given
This rule may have the following parameters for the ‘+R’ option:

N N is an integer literal used as the maximal value that is not flagged
(i.e., integer literals not exceeding this value are allowed)

ALL All integer literals are flagged

40

Chapter 8: Predefined Rules

Statements_Only
Numeric literals are flagged only when used in statements

If no parameters are set, the maximum unflagged value is 1, and the check for
literals is not limited by statements only.

The last specified check limit (or the fact that there is no limit at all) is used
when multiple ‘+R’ options appear.

The ‘-R’ option for this rule has no parameters. It disables the rule and
restores its default operation mode. If the ‘+R’ option subsequently appears,
will be 1, and the check will not be limited by statements only.

8.2.19 Parameters_Out_Of_Order

Flag each subprogram and entry declaration whose formal parameters are not
ordered according to the following scheme:
• in and access parameters first, then in out parameters, and then out

parameters;
• for in mode, parameters with default initialization expressions occur last

Only the first violation of the described order is flagged.
The following constructs are checked:

• subprogram declarations (including null procedures);
• generic subprogram declarations;
• formal subprogram declarations;
• entry declarations;
• subprogram bodies and subprogram body stubs that do not have separate

specifications
Subprogram renamings are not checked.

This rule has no parameters.

8.2.20 Raising_Predefined_Exceptions

Flag each raise statement that raises a predefined exception (i.e., one of the ex-
ceptions Constraint_Error, Numeric_Error, Program_Error, Storage_Error,
or Tasking_Error).

This rule has no parameters.

8.2.21 Unassigned_OUT_Parameters

Flag procedures’ out parameters that are not assigned.
An out parameter is flagged if the sequence of statements of the procedure

body (before the procedure body’s exception part, if any) contains no assignment
to the parameter.

41

GNATcheck Reference Manual

An out parameter is flagged in an exception handler in the exception part of
the procedure body, if the exception handler contains neither an assignment to
the parameter nor a raise statement.

Bodies of generic procedures are also considered.
The following are treated as assignments to an out parameter:

• an assignment statement, with the parameter or some component as the
target

• passing the parameter (or one of its components) as an out or in out pa-
rameter.

This rule has no parameters.

8.2.22 Unconstrained_Array_Returns

Flag each function returning an unconstrained array. Function declarations,
function bodies (and body stubs) having no separate specifications, and generic
function instantiations are flagged. Function calls and function renamings are
not flagged.

Generic function declarations, and function declarations in generic pack-
ages, are not flagged. Instead, this rule flags the results of generic instantia-
tions (that is, expanded specification and expanded body corresponding to an
instantiation).

This rule has the following (optional) parameters for the ‘+R’ option:

Except String
Do not flag functions that return the predefined String type or a
type derived from it, directly or indirectly.

8.3 Metrics-Related Rules
The rules in this section can be used to enforce compliance with specific code
metrics, by checking that the metrics computed for a program lie within user-
specifiable bounds. Depending on the metric, there may be a lower bound, an
upper bound, or both. A construct is flagged if the value of the metric exceeds
the upper bound or is less than the lower bound.

The name of any metrics rule consists of the prefix Metrics_ followed by
the name of the corresponding metric: Essential_Complexity, Cyclomatic_
Complexity, or LSLOC. (The “LSLOC” acronym stands for “Logical Source Lines
Of Code”.) The meaning and the computed values of the metrics are the same
as in gnatmetric.

For the ‘+R’ option, each metrics rule has a numeric parameter specifying the
bound (integer or real, depending on a metric). The ‘-R’ option for the metrics
rules does not have a parameter.

42

Chapter 8: Predefined Rules

Example: the rule
+RMetrics_Cyclomatic_Complexity : 7

means that all bodies with cyclomatic complexity exceeding 7 will be flagged.
To turn OFF the check for cyclomatic complexity metric, use the following

option:
-RMetrics_Cyclomatic_Complexity

8.3.1 Metrics_Essential_Complexity

The Metrics_Essential_Complexity rule takes a positive integer as upper
bound. A program unit that is an executable body exceeding this limit will be
flagged.

8.3.2 Metrics_Cyclomatic_Complexity

The Metrics_Cyclomatic_Complexity rule takes a positive integer as upper
bound. A program unit that is an executable body exceeding this limit will be
flagged.

8.3.3 Metrics_LSLOC

The Metrics_LSLOC rule takes a positive integer as upper bound. A program
unit declaration or a program unit body exceeding this limit will be flagged.

8.4 SPARK Ada Rules
The rules in this section can be used to enforce compliance with the Ada subset
allowed by the SPARK tools.

8.4.1 Annotated_Comments

Flags comments that are used as annotations or as special sentinels/markers.
Such comments have the following structure

--<special_character> <comment_marker>

where
<special_character>

character (such as ’#’, ’$’, ’|’ etc.) indicating that the comment is
used for a specific purpose

<comment_marker>
a word identifying the annotation or special usage (word here is any
sequence of characters except white space)

There may be any amount of white space (including none at all) between
<special_character> and <comment_marker>, but no white space is permit-
ted between ’--’ and <special_character>. (A white space here is either a
space character or horizontal tabulation)

43

GNATcheck Reference Manual

<comment_marker> must not contain any white space.
<comment_marker> may be empty, in which case the rule flags each comment

that starts with --<special_character> and that does not contain any other
character except white space

The rule has the following (mandatory) parameter for the ‘+R’ option:
S String with the following interpretation: the first character is the

special comment character, and the rest is the comment marker. S
must not contain white space.

The ‘-R’ option erases all definitions of special comment annotations specified
by the previous +R options.

The rule is case-sensitive.
Example:
The rule
+RAnnotated_Comments:#hide

will flag the following comment lines
--#hide

--# hide

--# hide

I := I + 1; --# hide

But the line
-- # hide

will not be flagged, because of the space between ’–’ and ’#’.
The line
--#Hide

will not be flagged, because the string parameter is case sensitive.

8.4.2 Boolean_Relational_Operators

Flag each call to a predefined relational operator (“<”, “>”, “<=”, “>=”, “=” and
“/=”) for the predefined Boolean type. (This rule is useful in enforcing the SPARK
language restrictions.)

Calls to predefined relational operators of any type derived from
Standard.Boolean are not detected. Calls to user-defined functions with
these designators, and uses of operators that are renamings of the predefined
relational operators for Standard.Boolean, are likewise not detected.

This rule has no parameters.

8.4.3 Expanded_Loop_Exit_Names

Flag all expanded loop names in exit statements.
This rule has no parameters.

44

Chapter 8: Predefined Rules

8.4.4 Non_SPARK_Attributes

The SPARK language defines the following subset of Ada 95 attribute desig-
nators as those that can be used in SPARK programs. The use of any other
attribute is flagged.
• ’Adjacent

• ’Aft

• ’Base

• ’Ceiling

• ’Component_Size

• ’Compose

• ’Copy_Sign

• ’Delta

• ’Denorm

• ’Digits

• ’Exponent

• ’First

• ’Floor

• ’Fore

• ’Fraction

• ’Last

• ’Leading_Part

• ’Length

• ’Machine

• ’Machine_Emax

• ’Machine_Emin

• ’Machine_Mantissa

• ’Machine_Overflows

• ’Machine_Radix

• ’Machine_Rounds

• ’Max

• ’Min

• ’Model

• ’Model_Emin

• ’Model_Epsilon

• ’Model_Mantissa

45

GNATcheck Reference Manual

• ’Model_Small

• ’Modulus

• ’Pos

• ’Pred

• ’Range

• ’Remainder

• ’Rounding

• ’Safe_First

• ’Safe_Last

• ’Scaling

• ’Signed_Zeros

• ’Size

• ’Small

• ’Succ

• ’Truncation

• ’Unbiased_Rounding

• ’Val

• ’Valid

This rule has no parameters.

8.4.5 Non_Tagged_Derived_Types

Flag all derived type declarations that do not have a record extension part.
This rule has no parameters.

8.4.6 Outer_Loop_Exits

Flag each exit statement containing a loop name that is not the name of the
immediately enclosing loop statement.

This rule has no parameters.

8.4.7 Overloaded_Operators

Flag each function declaration that overloads an operator symbol. A function
body is checked only if the body does not have a separate spec. Formal functions
are also checked. For a renaming declaration, only renaming-as-declaration is
checked

This rule has no parameters.

46

Chapter 8: Predefined Rules

8.4.8 Slices

Flag all uses of array slicing
This rule has no parameters.

8.4.9 Universal_Ranges

Flag discrete ranges that are a part of an index constraint, constrained array
definition, or for-loop parameter specification, and whose bounds are both of
type universal integer. Ranges that have at least one bound of a specific type
(such as 1 .. N, where N is a variable or an expression of non-universal type)
are not flagged.

This rule has no parameters.

47

Chapter 9: Example of gnatcheck Usage

9 Example of gnatcheck Usage
Here is a simple example. Suppose that in the current directory we have a
project file named ‘gnatcheck_example.gpr’ with the following content:

project Gnatcheck_Example is

for Source_Dirs use ("src");

for Object_Dir use "obj";

for Main use ("main.adb");

package Check is

for Default_Switches ("ada") use ("-rules", "-from=coding_standard");

end Check;

end Gnatcheck_Example;

And the file named ‘coding_standard’ is also located in the current directory
and has the following content:

-- This is a sample gnatcheck coding standard file --

-- First, turning on rules, that are directly implemented in gnatcheck

+RAbstract_Type_Declarations

+RAnonymous_Arrays

+RLocal_Packages

+RFloat_Equality_Checks

+REXIT_Statements_With_No_Loop_Name

-- Then, activating compiler checks of interest:

+RStyle_Checks:e

-- This style check checks if a unit name is present on END keyword that

-- is the end of the unit declaration

And the subdirectory ‘src’ contains the following Ada sources:
‘pack.ads’:
package Pack is

type T is abstract tagged private;

procedure P (X : T) is abstract;

package Inner is

type My_Float is digits 8;

function Is_Equal (L, R : My_Float) return Boolean;

end Inner;

private

type T is abstract tagged null record;

end;

‘pack.adb’:

49

GNATcheck Reference Manual

package body Pack is

package body Inner is

function Is_Equal (L, R : My_Float) return Boolean is

begin

return L = R;

end;

end Inner;

end Pack;

and ‘main.adb’
with Pack; use Pack;

procedure Main is

pragma Annotate

(gnatcheck, Exempt_On, "Anonymous_Arrays", "this one is fine");

Float_Array : array (1 .. 10) of Inner.My_Float;

pragma Annotate (gnatcheck, Exempt_Off, "Anonymous_Arrays");

Another_Float_Array : array (1 .. 10) of Inner.My_Float;

use Inner;

B : Boolean := False;

begin

for J in Float_Array’Range loop

if Is_Equal (Float_Array (J), Another_Float_Array (J)) then

B := True;

exit;

end if;

end loop;

end Main;

And suppose we call gnatcheck from the current directory using the gnat driver:
gnat check -Pgnatcheck_example.gpr

As a result, gnatcheck is called to check all the files from the project
‘gnatcheck_example.gpr’ using the coding standard defined by the file
‘coding_standard’. As the result, the gnatcheck report file named
‘gnatcheck.out’ will be created in the current directory, and it will have the
following content:

RULE CHECKING REPORT

1. OVERVIEW

Date and time of execution: 2009.10.28 14:17

Tool version: GNATCHECK (built with ASIS 2.0.R for GNAT Pro 6.3.0w (20091016))

Command line:

gnatcheck -files=... -cargs -gnatec=... -rules -from=coding_standard

50

Chapter 9: Example of gnatcheck Usage

Coding standard (applied rules):

Abstract_Type_Declarations

Anonymous_Arrays

EXIT_Statements_With_No_Loop_Name

Float_Equality_Checks

Local_Packages

Compiler style checks: -gnatye

Number of coding standard violations: 6

Number of exempted coding standard violations: 1

2. DETECTED RULE VIOLATIONS

2.1. NON-EXEMPTED VIOLATIONS

Source files with non-exempted violations

pack.ads

pack.adb

main.adb

List of violations grouped by files, and ordered by increasing source location:

pack.ads:2:4: declaration of abstract type

pack.ads:5:4: declaration of local package

pack.ads:10:30: declaration of abstract type

pack.ads:11:1: (style) "end Pack" required

pack.adb:5:19: use of equality operation for float values

pack.adb:6:7: (style) "end Is_Equal" required

main.adb:9:26: anonymous array type

main.adb:19:10: exit statement with no loop name

2.2. EXEMPTED VIOLATIONS

Source files with exempted violations

main.adb

List of violations grouped by files, and ordered by increasing source location:

main.adb:6:18: anonymous array type

(this one is fine)

2.3. SOURCE FILES WITH NO VIOLATION

No files without violations

END OF REPORT

51

Appendix A: List of Rules

Appendix A List of Rules
This Appendix contains an alphabetized list of all the predefined GNATcheck
rules.
• Abstract_Type_Declarations

See Section 8.2.1 [Abstract Type Declarations], page 37.
• Anonymous_Arrays

See Section 8.1.5.1 [Anonymous Arrays], page 24.
• Anonymous_Subtypes

See Section 8.2.2 [Anonymous Subtypes], page 37.
• Blocks

See Section 8.2.3 [Blocks], page 37.
• Boolean_Relational_Operators

See Section 8.4.2 [Boolean Relational Operators], page 44.
• Complex_Inlined_Subprograms

See Section 8.2.4 [Complex Inlined Subprograms], page 37.
• Controlled_Type_Declarations

See Section 8.2.5 [Controlled Type Declarations], page 38.
• Declarations_In_Blocks

See Section 8.2.6 [Declarations In Blocks], page 38.
• Deep_Inheritance_Hierarchies

See Section 8.1.2.1 [Deep Inheritance Hierarchies], page 18.
• Deeply_Nested_Generics

See Section 8.1.4.1 [Deeply Nested Generics], page 23.
• Deeply_Nested_Inlining

See Section 8.2.7 [Deeply Nested Inlining], page 38.
• Default_Parameters

See Section 8.2.8 [Default Parameters], page 38.
• Direct_Calls_To_Primitives

See Section 8.1.2.2 [Direct Calls To Primitives], page 18.
• Discriminated_Records

See Section 8.2.9 [Discriminated Records], page 39.
• Enumeration_Ranges_In_CASE_Statements

See Section 8.1.5.2 [Enumeration Ranges In CASE Statements], page 24.
• Exceptions_As_Control_Flow

See Section 8.1.5.3 [Exceptions As Control Flow], page 24.
• Exits_From_Conditional_Loops

See Section 8.1.5.4 [Exits From Conditional Loops], page 24.

53

GNATcheck Reference Manual

• EXIT_Statements_With_No_Loop_Name
See Section 8.1.5.5 [EXIT Statements With No Loop Name], page 24.

• Expanded_Loop_Exit_Names
See Section 8.4.3 [Expanded Loop Exit Names], page 44.

• Explicit_Full_Discrete_Ranges
See Section 8.2.10 [Explicit Full Discrete Ranges], page 39.

• Float_Equality_Checks
See Section 8.2.11 [Float Equality Checks], page 39.

• Forbidden_Attributes
See Section 8.1.3.1 [Forbidden Attributes], page 19.

• Forbidden_Pragmas
See Section 8.1.3.2 [Forbidden Pragmas], page 20.

• Function_Style_Procedures
See Section 8.2.12 [Function Style Procedures], page 39.

• Generics_In_Subprograms
See Section 8.2.13 [Generics In Subprograms], page 39.

• GOTO_Statements
See Section 8.1.5.6 [GOTO Statements], page 25.

• Implicit_IN_Mode_Parameters
See Section 8.2.14 [Implicit IN Mode Parameters], page 40.

• Implicit_SMALL_For_Fixed_Point_Types
See Section 8.1.3.3 [Implicit SMALL For Fixed Point Types], page 22.

• Improperly_Located_Instantiations
See Section 8.2.15 [Improperly Located Instantiations], page 40.

• Improper_Returns
See Section 8.1.5.7 [Improper Returns], page 25.

• Library_Level_Subprograms
See Section 8.2.16 [Library Level Subprograms], page 40.

• Local_Packages
See Section 8.1.4.2 [Local Packages], page 23.

• Metrics_Cyclomatic_Complexity
See Section 8.3.2 [Metrics Cyclomatic Complexity], page 43.

• Metrics_Essential_Complexity
See Section 8.3.1 [Metrics Essential Complexity], page 43.

• Metrics_LSLOC
See Section 8.3.3 [Metrics LSLOC], page 43.

• Misnamed_Controlling_Parameters
See Section 8.1.6.4 [Misnamed Controlling Parameters], page 35.

54

Appendix A: List of Rules

• Identifier_Suffixes
See Section 8.1.6.3 [Identifier Suffixes], page 33.

• Multiple_Entries_In_Protected_Definitions
See Section 8.1.1.1 [Multiple Entries In Protected Definitions], page 17.

• Name_Clashes
See Section 8.1.6.5 [Name Clashes], page 36.

• Non_Qualified_Aggregates
See Section 8.2.17 [Non Qualified Aggregates], page 40.

• Non_Short_Circuit_Operators
See Section 8.1.5.8 [Non Short Circuit Operators], page 25.

• Non_SPARK_Attributes
See Section 8.4.4 [Non SPARK Attributes], page 45.

• Non_Tagged_Derived_Types
See Section 8.4.5 [Non Tagged Derived Types], page 46.

• Non_Visible_Exceptions
See Section 8.1.4.3 [Non Visible Exceptions], page 23.

• Numeric_Literals
See Section 8.2.18 [Numeric Literals], page 40.

• OTHERS_In_Aggregates
See Section 8.1.5.9 [OTHERS In Aggregates], page 25.

• OTHERS_In_CASE_Statements
See Section 8.1.5.10 [OTHERS In CASE Statements], page 25.

• OTHERS_In_Exception_Handlers
See Section 8.1.5.11 [OTHERS In Exception Handlers], page 25.

• Outer_Loop_Exits
See Section 8.4.6 [Outer Loop Exits], page 46.

• Overloaded_Operators
See Section 8.4.7 [Overloaded Operators], page 46.

• Overly_Nested_Control_Structures
See Section 8.1.5.12 [Overly Nested Control Structures], page 26.

• Parameters_Out_Of_Order
See Section 8.2.19 [Parameters Out Of Order], page 41.

• Positional_Actuals_For_Defaulted_Generic_Parameters
See Section 8.1.5.13 [Positional Actuals For Defaulted Generic Parameters],
page 26.

• Positional_Actuals_For_Defaulted_Parameters
See Section 8.1.5.14 [Positional Actuals For Defaulted Parameters],
page 26.

55

GNATcheck Reference Manual

• Positional_Components
See Section 8.1.5.15 [Positional Components], page 26.

• Positional_Generic_Parameters
See Section 8.1.5.16 [Positional Generic Parameters], page 27.

• Positional_Parameters
See Section 8.1.5.17 [Positional Parameters], page 27.

• Predefined_Numeric_Types
See Section 8.1.3.5 [Predefined Numeric Types], page 22.

• Raising_External_Exceptions
See Section 8.1.4.4 [Raising External Exceptions], page 23.

• Raising_Predefined_Exceptions
See Section 8.2.20 [Raising Predefined Exceptions], page 41.

• Separate_Numeric_Error_Handlers
See Section 8.1.3.6 [Separate Numeric Error Handlers], page 22.

• Slices
See Section 8.4.8 [Slices], page 47.

• Too_Many_Parents
See Section 8.1.2.3 [Too Many Parents], page 19.

• Unassigned_OUT_Parameters
See Section 8.2.21 [Unassigned OUT Parameters], page 41.

• Uncommented_BEGIN_In_Package_Bodies
See Section 8.1.6.6 [Uncommented BEGIN In Package Bodies], page 36.

• Recursive_Subprograms
See Section 8.1.5.18 [Recursive Subprograms], page 27.

• Unconditional_Exits
See Section 8.1.5.19 [Unconditional Exits], page 27.

• Unconstrained_Array_Returns
See Section 8.2.22 [Unconstrained Array Returns], page 42.

• Universal_Ranges
See Section 8.4.9 [Universal Ranges], page 47.

• Unnamed_Blocks_And_Loops
See Section 8.1.5.20 [Unnamed Blocks And Loops], page 27.

• USE_PACKAGE_Clauses
See Section 8.1.5.21 [USE PACKAGE Clauses], page 27.

• Visible_Components
See Section 8.1.2.4 [Visible Components], page 19.

• Volatile_Objects_Without_Address_Clauses
See Section 8.1.1.2 [Volatile Objects Without Address Clauses], page 17.

56

Appendix B: GNU Free Documentation License

Appendix B GNU Free Documentation
License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written doc-
ument “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and pub-
lisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this
License. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related

57

GNATcheck Reference Manual

matters) and contains nothing that could fall directly within that overall subject.
(For example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.

A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, whose
contents can be viewed and edited directly and straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML designed
for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading

58

Appendix B: GNU Free Documentation License

or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and
the Document’s license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent copy
along with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard net-
work protocols. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified

59

GNATcheck Reference Manual

Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of

the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its principal
authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving

the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network lo-
cations given in the Document for previous versions it was based on. These
may be placed in the “History” section. You may omit a network location for
a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the
section’s title, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

60

Appendix B: GNU Free Documentation License

M. Delete any section entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title
with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties – for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in
the various original documents, forming one section entitled “History”; likewise

61

GNATcheck Reference Manual

combine any sections entitled “Acknowledgements”, and any sections entitled
“Dedications”. You must delete all sections entitled “Endorsements.”

Heading 6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents

released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a com-
pilation is called an “aggregate”, and this License does not apply to the other
self-contained works thus compiled with the Document, on account of their be-
ing thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one quarter of the entire
aggregate, the Document’s Cover Texts may be placed on covers that surround
only the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original
English version of this License, the original English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,

62

Appendix B: GNU Free Documentation License

sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents
To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after
the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation; with
the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled “GNU Free
Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead
of saying which ones are invariant. If you have no Front-Cover Texts, write
“no Front-Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for
Back-Cover Texts.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

63

Index

Index

+
‘+R’ (gnatcheck) . 9

-
‘--help’ . 7
‘--include-file=file’ . 8
‘--show-rule’ . 8
‘--version’ . 7
‘--write-rules’ . 8
‘-a’ . 7
‘-d’ . 7
‘-dd’ . 7
‘-from’ (gnatcheck) . 9
‘-h’ . 7
‘-j’ . 7
‘-l’ . 7
‘-log’ . 7
‘-m’ . 7
‘-o’ . 8
‘-q’ . 7
‘-R’ (gnatcheck) . 9
‘-s’ . 7
‘-t’ . 8
‘-v’ . 8

A
Abstract_Type_Declarations 37
Annotated_Comments . 43
Anonymous_Arrays . 24
Anonymous_Subtypes . 37
ASIS . 3

B
Blocks . 37
Boolean_Relational_Operators 44

C
Coding standard file (for gnatcheck) 9
Complex_Inlined_Subprograms 37
Controlled_Type_Declarations 38

D
Declarations_In_Blocks 38
Deep_Inheritance_Hierarchies 18
Deeply_Nested_Generics 23
Deeply_Nested_Inlining 38
Default_Parameters . 38
Direct_Calls_To_Primitives 18
Discriminated_Records 39

E
Enumeration_Ranges_In_CASE_Statements

. 24
Exceptions_As_Control_Flow 24
EXIT_Statements_With_No_Loop_Name 24
Exits_From_Conditional_Loops 24
Expanded_Loop_Exit_Names 44
Explicit_Full_Discrete_Ranges 39

F
Feature usage related rules 37
Float_Equality_Checks 39
Forbidden_Attributes . 19
Forbidden_Pragmas . 20
Format of the Report File 5
Free Documentation License, GNU 57
Function_Style_Procedures 39

G
Generics_In_Subprograms 39
gnatcheck annotations rules 16
GNU Free Documentation License 57
GOTO_Statements . 25

I
Identifier_Casing . 28
Identifier_Prefixes . 30
Identifier_Suffixes . 33
Implicit_IN_Mode_Parameters 40
Implicit_SMALL_For_Fixed_Point_Types

. 22

65

GNATcheck Reference Manual

Improper_Returns . 25
Improperly_Located_Instantiations 40

L
Library_Level_Subprograms 40
License, GNU Free Documentation 57
Local_Packages . 23

M
Metrics-related rules . 42
Metrics_Cyclomatic_Complexity 43
Metrics_Essential_Complexity 43
Metrics_LSLOC . 43
Misnamed_Controlling_Parameters 35
Multiple_Entries_In_Protected_

Definitions . 17

N
Name_Clashes . 36
No_Scalar_Storage_Order_Specified 22
Non_Qualified_Aggregates 40
Non_Short_Circuit_Operators 25
Non_SPARK_Attributes . 45
Non_Tagged_Derived_Types 46
Non_Visible_Exceptions rule 23
Numeric_Literals . 40

O
Object-Orientation related rules 18
OTHERS_In_Aggregates . 25
OTHERS_In_CASE_Statements 25
OTHERS_In_Exception_Handlers 25
Outer_Loop_Exits . 46
Overloaded_Operators . 46
Overly_Nested_Control_Structures 26

P
Parameters_Out_Of_Order 41
Portability-related rules 19
Positional_Actuals_For_Defaulted_

Generic_Parameters 26
Positional_Actuals_For_Defaulted_

Parameters rule . 26

Positional_Components 26
Positional_Generic_Parameters 27
Positional_Parameters 27
Predefined Rules . 17
Predefined_Numeric_Types 22
Program Structure related rules 23
Programming Practice related rules 24
Project-Wide Checks . 13

R
Raising_External_Exceptions 23
Raising_Predefined_Exceptions 41
Readability-related rules 28
Recursive_Subprograms rule 27
Rule exemption . 15

S
Separate_Numeric_Error_Handlers 22
Slices . 47
Source code presentation related rules 36
SPARK Ada related rules 43
Style-related rules . 17

T
Tasking-related rules . 17
Too_Many_Parents . 19

U
Unassigned_OUT_Parameters 41
Uncommented_BEGIN_In_Package_Bodies . . . 36
Unconditional_Exits rule 27
Unconstrained_Array_Returns 42
Universal_Ranges rule . 47
Unnamed_Blocks_And_Loops 27
USE_PACKAGE_Clauses . 27
Using pragma Annotate to control rule

exemption . 15

V
Visible_Components . 19
Volatile_Objects_Without_Address_Clauses

. 17

66

Table of Contents

About This Manual . 1
What This Manual Contains . 1
What You Should Know Before Reading This Manual . 1

1 Introduction . 3

2 Format of the Report File . 5

3 General \command gnatcheck Switches 7

4 \command gnatcheck Rule Options 9

5 Adding the Results of Compiler Checks to
\command gnatcheck Output . 11

6 Project-Wide Checks . 13

7 Rule exemption . 15
7.1 Using pragma \code Annotate to Control Rule Exemption 15
7.2 \command gnatcheck Annotations Rules . 16

8 Predefined Rules . 17
8.1 Style-Related Rules . 17

8.1.1 Tasking . 17
8.1.1.1 \code Multiple Entries In Protected Definitions 17
8.1.1.2 \code Volatile Objects Without Address Clauses 17

8.1.2 Object Orientation . 18
8.1.2.1 \code Deep Inheritance Hierarchies . 18
8.1.2.2 \code Direct Calls To Primitives . 18
8.1.2.3 \code Too Many Parents . 19
8.1.2.4 \code Visible Components . 19

8.1.3 Portability . 19
8.1.3.1 \code Forbidden Attributes . 19
8.1.3.2 \code Forbidden Pragmas . 20
8.1.3.3 \code Implicit SMALL For Fixed Point Types 22

i

GNATcheck Reference Manual

8.1.3.4 \code No Scalar Storage Order Specified 22
8.1.3.5 \code Predefined Numeric Types . 22
8.1.3.6 \code Separate Numeric Error Handlers 22

8.1.4 Program Structure . 23
8.1.4.1 \code Deeply Nested Generics . 23
8.1.4.2 \code Local Packages . 23
8.1.4.3 \code Non Visible Exceptions . 23
8.1.4.4 \code Raising External Exceptions . 23

8.1.5 Programming Practice . 24
8.1.5.1 \code Anonymous Arrays . 24
8.1.5.2 \code Enumeration Ranges In CASE Statements 24
8.1.5.3 \code Exceptions As Control Flow . 24
8.1.5.4 \code Exits From Conditional Loops . 24
8.1.5.5 \code EXIT Statements With No Loop Name 24
8.1.5.6 \code GOTO Statements . 25
8.1.5.7 \code Improper Returns . 25
8.1.5.8 \code Non Short Circuit Operators . 25
8.1.5.9 \code OTHERS In Aggregates . 25
8.1.5.10 \code OTHERS In CASE Statements 25
8.1.5.11 \code OTHERS In Exception Handlers 25
8.1.5.12 \code Overly Nested Control Structures 26
8.1.5.13 \code

Positional Actuals For Defaulted Generic Parameters 26
8.1.5.14 \code Positional Actuals For Defaulted Parameters 26
8.1.5.15 \code Positional Components . 26
8.1.5.16 \code Positional Generic Parameters . 27
8.1.5.17 \code Positional Parameters . 27
8.1.5.18 \code Recursive Subprograms . 27
8.1.5.19 \code Unconditional Exits . 27
8.1.5.20 \code Unnamed Blocks And Loops . 27
8.1.5.21 \code USE PACKAGE Clauses . 27

8.1.6 Readability . 28
8.1.6.1 \code Identifier Casing . 28
8.1.6.2 \code Identifier Prefixes . 30
8.1.6.3 \code Identifier Suffixes . 33
8.1.6.4 \code Misnamed Controlling Parameters 35
8.1.6.5 \code Name Clashes . 36
8.1.6.6 \code Uncommented BEGIN In Package Bodies 36

8.1.7 Source Code Presentation . 36
8.2 Feature Usage Rules . 37

8.2.1 \code Abstract Type Declarations . 37
8.2.2 \code Anonymous Subtypes . 37
8.2.3 \code Blocks . 37

ii

8.2.4 \code Complex Inlined Subprograms . 37
8.2.5 \code Controlled Type Declarations . 38
8.2.6 \code Declarations In Blocks . 38
8.2.7 \code Deeply Nested Inlining . 38
8.2.8 \code Default Parameters . 38
8.2.9 \code Discriminated Records . 39
8.2.10 \code Explicit Full Discrete Ranges . 39
8.2.11 \code Float Equality Checks . 39
8.2.12 \code Function Style Procedures . 39
8.2.13 \code Generics In Subprograms . 39
8.2.14 \code Implicit IN Mode Parameters . 40
8.2.15 \code Improperly Located Instantiations . 40
8.2.16 \code Library Level Subprograms . 40
8.2.17 \code Non Qualified Aggregates . 40
8.2.18 \code Numeric Literals . 40
8.2.19 \code Parameters Out Of Order . 41
8.2.20 \code Raising Predefined Exceptions . 41
8.2.21 \code Unassigned OUT Parameters . 41
8.2.22 \code Unconstrained Array Returns . 42

8.3 Metrics-Related Rules . 42
8.3.1 \code Metrics Essential Complexity . 43
8.3.2 \code Metrics Cyclomatic Complexity . 43
8.3.3 \code Metrics LSLOC . 43

8.4 SPARK Ada Rules . 43
8.4.1 \code Annotated Comments . 43
8.4.2 \code Boolean Relational Operators . 44
8.4.3 \code Expanded Loop Exit Names . 44
8.4.4 \code Non SPARK Attributes . 45
8.4.5 \code Non Tagged Derived Types . 46
8.4.6 \code Outer Loop Exits . 46
8.4.7 \code Overloaded Operators . 46
8.4.8 \code Slices . 47
8.4.9 \code Universal Ranges . 47

9 Example of \command gnatcheck Usage 49

Appendix A List of Rules . 53

Appendix B GNU Free Documentation License 57

Index . 65

iii

	About This Manual
	What This Manual Contains
	What You Should Know Before Reading This Manual

	Introduction
	Format of the Report File
	General \command {gnatcheck} Switches
	\command {gnatcheck} Rule Options
	Adding the Results of Compiler Checks to \command {gnatcheck} Output
	Project-Wide Checks
	Rule exemption
	Using pragma \code {Annotate} to Control Rule Exemption
	\command {gnatcheck} Annotations Rules

	Predefined Rules
	Style-Related Rules
	Tasking
	\code {Multiple_Entries_In_Protected_Definitions}
	\code {Volatile_Objects_Without_Address_Clauses}

	Object Orientation
	\code {Deep_Inheritance_Hierarchies}
	\code {Direct_Calls_To_Primitives}
	\code {Too_Many_Parents}
	\code {Visible_Components}

	Portability
	\code {Forbidden_Attributes}
	\code {Forbidden_Pragmas}
	\code {Implicit_SMALL_For_Fixed_Point_Types}
	\code {No_Scalar_Storage_Order_Specified}
	\code {Predefined_Numeric_Types}
	\code {Separate_Numeric_Error_Handlers}

	Program Structure
	\code {Deeply_Nested_Generics}
	\code {Local_Packages}
	\code {Non_Visible_Exceptions}
	\code {Raising_External_Exceptions}

	Programming Practice
	\code {Anonymous_Arrays}
	\code {Enumeration_Ranges_In_CASE_Statements}
	\code {Exceptions_As_Control_Flow}
	\code {Exits_From_Conditional_Loops}
	\code {EXIT_Statements_With_No_Loop_Name}
	\code {GOTO_Statements}
	\code {Improper_Returns}
	\code {Non_Short_Circuit_Operators}
	\code {OTHERS_In_Aggregates}
	\code {OTHERS_In_CASE_Statements}
	\code {OTHERS_In_Exception_Handlers}
	\code {Overly_Nested_Control_Structures}
	\code {Positional_Actuals_For_Defaulted_Generic_Parameters}
	\code {Positional_Actuals_For_Defaulted_Parameters}
	\code {Positional_Components}
	\code {Positional_Generic_Parameters}
	\code {Positional_Parameters}
	\code {Recursive_Subprograms}
	\code {Unconditional_Exits}
	\code {Unnamed_Blocks_And_Loops}
	\code {USE_PACKAGE_Clauses}

	Readability
	\code {Identifier_Casing}
	\code {Identifier_Prefixes}
	\code {Identifier_Suffixes}
	\code {Misnamed_Controlling_Parameters}
	\code {Name_Clashes}
	\code {Uncommented_BEGIN_In_Package_Bodies}

	Source Code Presentation

	Feature Usage Rules
	\code {Abstract_Type_Declarations}
	\code {Anonymous_Subtypes}
	\code {Blocks}
	\code {Complex_Inlined_Subprograms}
	\code {Controlled_Type_Declarations}
	\code {Declarations_In_Blocks}
	\code {Deeply_Nested_Inlining}
	\code {Default_Parameters}
	\code {Discriminated_Records}
	\code {Explicit_Full_Discrete_Ranges}
	\code {Float_Equality_Checks}
	\code {Function_Style_Procedures}
	\code {Generics_In_Subprograms}
	\code {Implicit_IN_Mode_Parameters}
	\code {Improperly_Located_Instantiations}
	\code {Library_Level_Subprograms}
	\code {Non_Qualified_Aggregates}
	\code {Numeric_Literals}
	\code {Parameters_Out_Of_Order}
	\code {Raising_Predefined_Exceptions}
	\code {Unassigned_OUT_Parameters}
	\code {Unconstrained_Array_Returns}

	Metrics-Related Rules
	\code {Metrics_Essential_Complexity}
	\code {Metrics_Cyclomatic_Complexity}
	\code {Metrics_LSLOC}

	SPARK Ada Rules
	\code {Annotated_Comments}
	\code {Boolean_Relational_Operators}
	\code {Expanded_Loop_Exit_Names}
	\code {Non_SPARK_Attributes}
	\code {Non_Tagged_Derived_Types}
	\code {Outer_Loop_Exits}
	\code {Overloaded_Operators}
	\code {Slices}
	\code {Universal_Ranges}

	Example of \command {gnatcheck} Usage
	List of Rules
	GNU Free Documentation License
	Index

